量子噪声是嘈杂中间级量子(NISQ)计算机中的关键挑战。以前的缓解噪声的工作主要集中在门级或脉冲级噪声自适应编译。然而,有限的研究工作通过使量子电路本身对噪声具有更高的优化级别。我们提出了Quoutumnas,是变分电路和量子位映射的噪声自适应共同搜索的全面框架。变形量子电路是构建QML和量子仿真的有希望的方法。然而,由于大型设计空间和参数训练成本,找到最佳变分电路及其最佳参数是具有挑战性的。我们建议通过引入新的超级速度来解耦电路搜索和参数培训。超电路由多层预定的参数化栅极构成,并通过迭代采样和更新其的参数子集(Subcircuit)训练。它提供了从头开始培训的子通差形性能的准确估计。然后我们执行Subcircuit的演进共同搜索和其量子位映射。使用从超级电路继承的参数和使用真实设备噪声模型进行估计,估计子电路性能。最后,我们执行迭代栅极修剪和FineTuning以去除冗余栅极。在10个量子计算上广泛评估了12个QML和VQE基准,Quoutumnas显着优于基线。对于QML,Quoutumnas是第一个展示超过95%的2级,85%的4级和真实QC的32%的10级分类准确性。与UCCSD相比,它还实现了H2,H2O,LIH,CH4,BEH2上的VQE任务的最低特征值。我们还开源Quantumengine(https://github.com/mit-han-lab/pytorch-quantum),用于快速训练参数化量子电路,以促进未来的研究。
translated by 谷歌翻译
在标准量子传感(QS)任务中,One旨在通过系统测量结果估算未知参数$ \ theta $,该参数$ \ theta $编码为$ n $ qubit的探测态。此任务的成功取决于将参数的变化与系统响应$ \ MATHCAL {r}(\ theta)$(即测量结果的变化)相关联的能力。对于简单的情况,$ \ Mathcal {r}(\ theta)$的形式是已知的,但是对于现实情况而言,不能说相同,因为不存在一般的封闭式表达式。在这项工作中,我们为QS提供了基于推理的方案。我们表明,对于一般的编码统一家庭,$ \ Mathcal {r}(\ theta)$只能通过仅在$ 2N+1 $参数下测量系统响应来充分表征。反过来,这使我们能够在测量响应中推断未知参数的值,并确定感应方案的灵敏度,这表征了其整体性能。我们表明,如果一个人以许多镜头来测量系统响应,则推理错误的可能性很小,但仅缩放为$ \ omega(\ log^3(n)/\ delta^2) $。此外,所提供的框架可以广泛应用,因为它对于任意探针状态和测量方案仍然有效,甚至在存在量子噪声的情况下也保持。我们还讨论了如何将结果扩展到统一家庭之外。最后,为了展示我们的方法,我们在实际量子硬件和数值模拟中实现了它的QS任务。
translated by 谷歌翻译
背景:虽然卷积神经网络(CNN)实现了检测基于磁共振成像(MRI)扫描的阿尔茨海默病(AD)痴呆的高诊断准确性,但它们尚未应用于临床常规。这是一个重要原因是缺乏模型可理解性。最近开发的用于导出CNN相关性图的可视化方法可能有助于填补这种差距。我们调查了具有更高准确性的模型还依赖于先前知识预定义的判别脑区域。方法:我们培训了CNN,用于检测痴呆症和Amnestic认知障碍(MCI)患者的N = 663 T1加权MRI扫描的AD,并通过交叉验证和三个独立样本验证模型的准确性= 1655例。我们评估了相关评分和海马体积的关联,以验证这种方法的临床效用。为了提高模型可理解性,我们实现了3D CNN相关性图的交互式可视化。结果:跨三个独立数据集,组分离表现出广告痴呆症与控制的高精度(AUC $ \ GEQUQ $ 0.92)和MCI与控制的中等精度(AUC $ \约0.75美元)。相关性图表明海马萎缩被认为是广告检测的最具信息性因素,其其他皮质和皮质区域中的萎缩额外贡献。海马内的相关评分与海马体积高度相关(Pearson的r $ \大约$ -0.86,p <0.001)。结论:相关性地图突出了我们假设先验的地区的萎缩。这加强了CNN模型的可理解性,这些模型基于扫描和诊断标签以纯粹的数据驱动方式培训。
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
We present Muse, a text-to-image Transformer model that achieves state-of-the-art image generation performance while being significantly more efficient than diffusion or autoregressive models. Muse is trained on a masked modeling task in discrete token space: given the text embedding extracted from a pre-trained large language model (LLM), Muse is trained to predict randomly masked image tokens. Compared to pixel-space diffusion models, such as Imagen and DALL-E 2, Muse is significantly more efficient due to the use of discrete tokens and requiring fewer sampling iterations; compared to autoregressive models, such as Parti, Muse is more efficient due to the use of parallel decoding. The use of a pre-trained LLM enables fine-grained language understanding, translating to high-fidelity image generation and the understanding of visual concepts such as objects, their spatial relationships, pose, cardinality etc. Our 900M parameter model achieves a new SOTA on CC3M, with an FID score of 6.06. The Muse 3B parameter model achieves an FID of 7.88 on zero-shot COCO evaluation, along with a CLIP score of 0.32. Muse also directly enables a number of image editing applications without the need to fine-tune or invert the model: inpainting, outpainting, and mask-free editing. More results are available at https://muse-model.github.io
translated by 谷歌翻译
Optical coherence tomography (OCT) captures cross-sectional data and is used for the screening, monitoring, and treatment planning of retinal diseases. Technological developments to increase the speed of acquisition often results in systems with a narrower spectral bandwidth, and hence a lower axial resolution. Traditionally, image-processing-based techniques have been utilized to reconstruct subsampled OCT data and more recently, deep-learning-based methods have been explored. In this study, we simulate reduced axial scan (A-scan) resolution by Gaussian windowing in the spectral domain and investigate the use of a learning-based approach for image feature reconstruction. In anticipation of the reduced resolution that accompanies wide-field OCT systems, we build upon super-resolution techniques to explore methods to better aid clinicians in their decision-making to improve patient outcomes, by reconstructing lost features using a pixel-to-pixel approach with an altered super-resolution generative adversarial network (SRGAN) architecture.
translated by 谷歌翻译
Learning with noisy-labels has become an important research topic in computer vision where state-of-the-art (SOTA) methods explore: 1) prediction disagreement with co-teaching strategy that updates two models when they disagree on the prediction of training samples; and 2) sample selection to divide the training set into clean and noisy sets based on small training loss. However, the quick convergence of co-teaching models to select the same clean subsets combined with relatively fast overfitting of noisy labels may induce the wrong selection of noisy label samples as clean, leading to an inevitable confirmation bias that damages accuracy. In this paper, we introduce our noisy-label learning approach, called Asymmetric Co-teaching (AsyCo), which introduces novel prediction disagreement that produces more consistent divergent results of the co-teaching models, and a new sample selection approach that does not require small-loss assumption to enable a better robustness to confirmation bias than previous methods. More specifically, the new prediction disagreement is achieved with the use of different training strategies, where one model is trained with multi-class learning and the other with multi-label learning. Also, the new sample selection is based on multi-view consensus, which uses the label views from training labels and model predictions to divide the training set into clean and noisy for training the multi-class model and to re-label the training samples with multiple top-ranked labels for training the multi-label model. Extensive experiments on synthetic and real-world noisy-label datasets show that AsyCo improves over current SOTA methods.
translated by 谷歌翻译
Compliance in actuation has been exploited to generate highly dynamic maneuvers such as throwing that take advantage of the potential energy stored in joint springs. However, the energy storage and release could not be well-timed yet. On the contrary, for multi-link systems, the natural system dynamics might even work against the actual goal. With the introduction of variable stiffness actuators, this problem has been partially addressed. With a suitable optimal control strategy, the approximate decoupling of the motor from the link can be achieved to maximize the energy transfer into the distal link prior to launch. However, such continuous stiffness variation is complex and typically leads to oscillatory swing-up motions instead of clear launch sequences. To circumvent this issue, we investigate decoupling for speed maximization with a dedicated novel actuator concept denoted Bi-Stiffness Actuation. With this, it is possible to fully decouple the link from the joint mechanism by a switch-and-hold clutch and simultaneously keep the elastic energy stored. We show that with this novel paradigm, it is not only possible to reach the same optimal performance as with power-equivalent variable stiffness actuation, but even directly control the energy transfer timing. This is a major step forward compared to previous optimal control approaches, which rely on optimizing the full time-series control input.
translated by 谷歌翻译
Diabetic Retinopathy (DR) is a leading cause of vision loss in the world, and early DR detection is necessary to prevent vision loss and support an appropriate treatment. In this work, we leverage interactive machine learning and introduce a joint learning framework, termed DRG-Net, to effectively learn both disease grading and multi-lesion segmentation. Our DRG-Net consists of two modules: (i) DRG-AI-System to classify DR Grading, localize lesion areas, and provide visual explanations; (ii) DRG-Expert-Interaction to receive feedback from user-expert and improve the DRG-AI-System. To deal with sparse data, we utilize transfer learning mechanisms to extract invariant feature representations by using Wasserstein distance and adversarial learning-based entropy minimization. Besides, we propose a novel attention strategy at both low- and high-level features to automatically select the most significant lesion information and provide explainable properties. In terms of human interaction, we further develop DRG-Net as a tool that enables expert users to correct the system's predictions, which may then be used to update the system as a whole. Moreover, thanks to the attention mechanism and loss functions constraint between lesion features and classification features, our approach can be robust given a certain level of noise in the feedback of users. We have benchmarked DRG-Net on the two largest DR datasets, i.e., IDRID and FGADR, and compared it to various state-of-the-art deep learning networks. In addition to outperforming other SOTA approaches, DRG-Net is effectively updated using user feedback, even in a weakly-supervised manner.
translated by 谷歌翻译
In this work a novel recommender system (RS) for Tourism is presented. The RS is context aware as is now the rule in the state-of-the-art for recommender systems and works on top of a tourism ontology which is used to group the different items being offered. The presented RS mixes different types of recommenders creating an ensemble which changes on the basis of the RS's maturity. Starting from simple content-based recommendations and iteratively adding popularity, demographic and collaborative filtering methods as rating density and user cardinality increases. The result is a RS that mutates during its lifetime and uses a tourism ontology and natural language processing (NLP) to correctly bin the items to specific item categories and meta categories in the ontology. This item classification facilitates the association between user preferences and items, as well as allowing to better classify and group the items being offered, which in turn is particularly useful for context-aware filtering.
translated by 谷歌翻译