Recently, the use of synthetic training data has been on the rise as it offers correctly labelled datasets at a lower cost. The downside of this technique is that the so-called domain gap between the real target images and synthetic training data leads to a decrease in performance. In this paper, we attempt to provide a holistic overview of how to use synthetic data for object detection. We analyse aspects of generating the data as well as techniques used to train the models. We do so by devising a number of experiments, training models on the Dataset of Industrial Metal Objects (DIMO). This dataset contains both real and synthetic images. The synthetic part has different subsets that are either exact synthetic copies of the real data or are copies with certain aspects randomised. This allows us to analyse what types of variation are good for synthetic training data and which aspects should be modelled to closely match the target data. Furthermore, we investigate what types of training techniques are beneficial towards generalisation to real data, and how to use them. Additionally, we analyse how real images can be leveraged when training on synthetic images. All these experiments are validated on real data and benchmarked to models trained on real data. The results offer a number of interesting takeaways that can serve as basic guidelines for using synthetic data for object detection. Code to reproduce results is available at https://github.com/EDM-Research/DIMO_ObjectDetection.
translated by 谷歌翻译
We study the problem of combining neural networks with symbolic reasoning. Recently introduced frameworks for Probabilistic Neurosymbolic Learning (PNL), such as DeepProbLog, perform exponential-time exact inference, limiting the scalability of PNL solutions. We introduce Approximate Neurosymbolic Inference (A-NeSI): a new framework for PNL that uses neural networks for scalable approximate inference. A-NeSI 1) performs approximate inference in polynomial time without changing the semantics of probabilistic logics; 2) is trained using data generated by the background knowledge; 3) can generate symbolic explanations of predictions; and 4) can guarantee the satisfaction of logical constraints at test time, which is vital in safety-critical applications. Our experiments show that A-NeSI is the first end-to-end method to scale the Multi-digit MNISTAdd benchmark to sums of 15 MNIST digits, up from 4 in competing systems. Finally, our experiments show that A-NeSI achieves explainability and safety without a penalty in performance.
translated by 谷歌翻译
脑小血管疾病的成像标记提供了有关脑部健康的宝贵信息,但是它们的手动评估既耗时又受到实质性内部和间际变异性的阻碍。自动化评级可能受益于生物医学研究以及临床评估,但是现有算法的诊断可靠性尚不清楚。在这里,我们介绍了\ textIt {血管病变检测和分割}(\ textit {v textit {where valdo?})挑战,该挑战是在国际医学图像计算和计算机辅助干预措施(MICCAI)的卫星事件中运行的挑战(MICCAI) 2021.这一挑战旨在促进大脑小血管疾病的小而稀疏成像标记的自动检测和分割方法的开发,即周围空间扩大(EPVS)(任务1),脑微粒(任务2)和预先塑造的鞋类血管起源(任务3),同时利用弱和嘈杂的标签。总体而言,有12个团队参与了针对一个或多个任务的解决方案的挑战(任务1 -EPVS 4,任务2 -Microbleeds的9个,任务3 -lacunes的6个)。多方数据都用于培训和评估。结果表明,整个团队和跨任务的性能都有很大的差异,对于任务1- EPV和任务2-微型微型且对任务3 -lacunes尚无实际的结果,其结果尤其有望。它还强调了可能阻止个人级别使用的情况的性能不一致,同时仍证明在人群层面上有用。
translated by 谷歌翻译
尽管深度神经网络能够在各种任务上实现优于人类的表现,但他们臭名昭著,因为他们需要大量的数据和计算资源,将其成功限制在可用的这些资源的领域。金属学习方法可以通过从相关任务中转移知识来解决此问题,从而减少学习新任务所需的数据和计算资源的数量。我们组织了元数据竞赛系列,该系列为世界各地的研究小组提供了创建和实验评估实际问题的新元学习解决方案的机会。在本文中,我们在竞争组织者和排名最高的参与者之间进行了合作,我们描述了竞争的设计,数据集,最佳实验结果以及Neurips 2021挑战中最高的方法,这些方法吸引了15进入最后阶段的活跃团队(通过表现优于基线),在反馈阶段进行了100多次代码提交。顶级参与者的解决方案是开源的。汲取的经验教训包括学习良好的表示对于有效的转移学习至关重要。
translated by 谷歌翻译
最近的工作表明,我们可以在学习系统中使用逻辑背景知识来弥补缺乏标记的培训数据。许多这样的方法通过创建编码此知识的损失函数来起作用。但是,即使在测试时间仍然有用,逻辑通常在训练后会被丢弃。相反,我们通过额外的计算步骤来完善预测来确保神经网络预测能够满足知识。我们介绍了可区分的改进功能,该功能找到了接近原始预测的校正预测。我们研究了如何有效有效地计算这些完善功能。使用新算法,我们结合了改进函数,以找到任何复杂性的逻辑公式的完善预测。该算法在复杂的SAT配方中发现了最佳的改进,以较少的迭代率明显更少,并且经常发现梯度下降无法进行的解决方案。
translated by 谷歌翻译
现代深度学习需要大规模广泛标记的数据集进行培训。少量学习旨在通过有效地从少数标记的例子中学习来缓解这个问题。在先前提出的少量视觉分类器中,假设对分类器决定的特征歧管具有不相关的特征尺寸和均匀特征方差。在这项工作中,我们专注于通过提出以低标签制度运行的差异敏感的模型来解决这一假设引起的限制。第一种方法简单的CNAP,采用基于分层正规的Mahalanobis距离基于距离的分类器,与现有神经自适应特征提取器的状态相结合,以在元数据集,迷你成像和分层图像基准基准上实现强大性能。我们进一步将这种方法扩展到转换学习设置,提出转导压盖。这种转换方法将软k-means参数细化过程与两步任务编码器相结合,以实现使用未标记数据的改进的测试时间分类精度。转导CNAP在元数据集上实现了最先进的性能。最后,我们探讨了我们的方法(简单和转换)的使用“开箱即用”持续和积极的学习。大规模基准的广泛实验表明了这一点的鲁棒性和多功能性,相对说话,简单的模型。所有培训的模型检查点和相应的源代码都已公开可用。
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译
空间生物学研究旨在了解太空飞行对生物的根本影响,制定支持深度空间探索的基础知识,最终生物工程航天器和栖息地稳定植物,农作物,微生物,动物和人类的生态系统,为持续的多行星寿命稳定。要提高这些目标,该领域利用了来自星空和地下模拟研究的实验,平台,数据和模型生物。由于研究扩展到低地球轨道之外,实验和平台必须是最大自主,光,敏捷和智能化,以加快知识发现。在这里,我们介绍了由美国国家航空航天局的人工智能,机器学习和建模应用程序组织的研讨会的建议摘要,这些应用程序为这些空间生物学挑战提供了关键解决方案。在未来十年中,将人工智能融入太空生物学领域将深化天空效应的生物学理解,促进预测性建模和分析,支持最大自主和可重复的实验,并有效地管理星载数据和元数据,所有目标使生活能够在深空中茁壮成长。
translated by 谷歌翻译
在处理自动化数据驱动的决策中的敏感数据时,一个重要的问题是学习具有高性能的预测因素对类标签进行高性能,同时最小化对从偏置数据引起的性别或种族的任何敏感属性的歧视。存在一些混合树优化标准,即结合分类性能和公平性。虽然无阈值ROC-AUC是测量传统分类模型性能的标准,但目前的公平树分类方法主要针对分类任务以及公平度量的固定阈值优化。在本文中,我们提出了一种复合分裂标准,其将无阈值(即,强)人口统计平价与Roc-Auc称为公允剧的Scaff - 分裂标准AUC - 并且容易延伸到袋装和提升的树框架。我们的方法同时利用多个敏感属性,其中值可以是多语言的或交叉的,并且可以针对不可避免的性能公平折衷来调谐。在我们的实验中,我们展示了Scaff如何在二进制,多语言和多敏感属性方面产生具有性能和公平的模型。
translated by 谷歌翻译
多视图数据是指特征被分成特征集的设置,例如因为它们对应于不同的源。堆叠惩罚的逻辑回归(Staplr)是最近引入的方法,可用于分类并自动选择对预测最重要的视图。我们将此方法的扩展引入到数据具有分层多视图结构的位置。我们还为STAPLR介绍了一个新的视图重要性措施,这使我们能够比较层次结构的任何级别的视图的重要性。我们将扩展的STAPLR算法应用于Alzheimer的疾病分类,其中来自三种扫描类型的不同MRI措施:结构MRI,扩散加权MRI和休息状态FMRI。Staplr可以识别哪种扫描类型以及MRI措施对于分类最重要,并且在分类性能方面优于弹性净回归。
translated by 谷歌翻译