使用团队或机器人联盟的任务分配是机器人技术,计算机科学,运营研究和人工智能中最重要的问题之一。在最近的工作中,研究集中在处理复杂的目标和可行性限制之间,这是多机器人任务分配问题的其他变化。在这些方向上有许多重要的研究进展的例子。我们提出了任务分配问题的一般表述,该问题概括了几个经过充分研究的版本。我们的表述包括机器人,任务和其操作周围环境的状态。我们描述问题如何根据可行性约束,目标函数和动态变化信息的水平而变化。此外,我们讨论了有关该问题的现有解决方案方法,包括基于优化的方法和基于市场的方法。
translated by 谷歌翻译
This work presents an actuation framework for a bioinspired flapping drone called Aerobat. This drone, capable of producing dynamically versatile wing conformations, possesses 14 body joints and is tail-less. Therefore, in our robot, unlike mainstream flapping wing designs that are open-loop stable and have no pronounced morphing characteristics, the actuation, and closed-loop feedback design can pose significant challenges. We propose a framework based on integrating mechanical intelligence and control. In this design framework, small adjustments led by several tiny low-power actuators called primers can yield significant flight control roles owing to the robot's computational structures. Since they are incredibly lightweight, the system can host the primers in large numbers. In this work, we aim to show the feasibility of joint's motion regulation in Aerobat's untethered flights.
translated by 谷歌翻译
Flying animals, such as bats, fly through their fluidic environment as they create air jets and form wake structures downstream of their flight path. Bats, in particular, dynamically morph their highly flexible and dexterous armwing to manipulate their fluidic environment which is key to their agility and flight efficiency. This paper presents the theoretical and numerical analysis of the wake-structure-based gait design inspired by bat flight for flapping robots using the notion of reduced-order models and unsteady aerodynamic model incorporating Wagner function. The objective of this paper is to introduce the notion of gait design for flapping robots by systematically searching the design space in the context of optimization. The solution found using our gait design framework was used to design and test a flapping robot.
translated by 谷歌翻译
Machine reading comprehension (MRC) is a long-standing topic in natural language processing (NLP). The MRC task aims to answer a question based on the given context. Recently studies focus on multi-hop MRC which is a more challenging extension of MRC, which to answer a question some disjoint pieces of information across the context are required. Due to the complexity and importance of multi-hop MRC, a large number of studies have been focused on this topic in recent years, therefore, it is necessary and worth reviewing the related literature. This study aims to investigate recent advances in the multi-hop MRC approaches based on 31 studies from 2018 to 2022. In this regard, first, the multi-hop MRC problem definition will be introduced, then 31 models will be reviewed in detail with a strong focus on their multi-hop aspects. They also will be categorized based on their main techniques. Finally, a fine-grain comprehensive comparison of the models and techniques will be presented.
translated by 谷歌翻译
Multi-hop Machine reading comprehension is a challenging task with aim of answering a question based on disjoint pieces of information across the different passages. The evaluation metrics and datasets are a vital part of multi-hop MRC because it is not possible to train and evaluate models without them, also, the proposed challenges by datasets often are an important motivation for improving the existing models. Due to increasing attention to this field, it is necessary and worth reviewing them in detail. This study aims to present a comprehensive survey on recent advances in multi-hop MRC evaluation metrics and datasets. In this regard, first, the multi-hop MRC problem definition will be presented, then the evaluation metrics based on their multi-hop aspect will be investigated. Also, 15 multi-hop datasets have been reviewed in detail from 2017 to 2022, and a comprehensive analysis has been prepared at the end. Finally, open issues in this field have been discussed.
translated by 谷歌翻译
Many existing datasets for lidar place recognition are solely representative of structured urban environments, and have recently been saturated in performance by deep learning based approaches. Natural and unstructured environments present many additional challenges for the tasks of long-term localisation but these environments are not represented in currently available datasets. To address this we introduce Wild-Places, a challenging large-scale dataset for lidar place recognition in unstructured, natural environments. Wild-Places contains eight lidar sequences collected with a handheld sensor payload over the course of fourteen months, containing a total of 67K undistorted lidar submaps along with accurate 6DoF ground truth. Our dataset contains multiple revisits both within and between sequences, allowing for both intra-sequence (i.e. loop closure detection) and inter-sequence (i.e. re-localisation) place recognition. We also benchmark several state-of-the-art approaches to demonstrate the challenges that this dataset introduces, particularly the case of long-term place recognition due to natural environments changing over time. Our dataset and code will be available at https://csiro-robotics.github.io/Wild-Places.
translated by 谷歌翻译
网络物理系统(CPSS)通常是复杂且至关重要的;因此,确保系统的要求,即规格,很难满足。基于仿真的CPS伪造是一种实用的测试方法,可用于通过仅要求模拟正在测试的系统来提高对系统正确性的信心。由于每个仿真通常在计算上进行密集,因此一个重要的步骤是减少伪造规范所需的仿真数量。我们研究贝叶斯优化(BO),一种样本效率的方法,它学习了一个替代模型,该模型描述了可能的输入信号的参数化与规范评估之间的关系。在本文中,我们改善了使用BO的伪造;首先采用两种突出的BO方法,一种适合本地替代模型,另一个适合当地的替代模型,利用了用户的先验知识。其次,本文介绍了伪造功能的采集函数的表述。基准评估显示,使用BO的局部替代模型来伪造以前难以伪造的基准示例的显着改善。在伪造过程中使用先验知识被证明是在模拟预算有限时特别重要的。对于某些基准问题,采集功能的选择清楚地影响了成功伪造所需的模拟数量。
translated by 谷歌翻译
心电图(ECG)是用于监测心脏电信号和评估其功能的最常见和常规诊断工具。人心脏可能患有多种疾病,包括心律不齐。心律不齐是一种不规则的心律,在严重的情况下会导致心脏中风,可以通过ECG记录诊断。由于早期发现心律不齐非常重要,因此在过去的几十年中,计算机化和自动化的分类以及这些异常心脏信号的识别引起了很多关注。方法:本文引入了一种轻度的深度学习方法,以高精度检测8种不同的心律不齐和正常节奏。为了利用深度学习方法,将重新采样和基线徘徊清除技术应用于ECG信号。在这项研究中,将500个样本ECG段用作模型输入。节奏分类是通过11层网络以端到端方式完成的,而无需手工制作的手动功能提取。结果:为了评估提出的技术,从两个Physionet数据库,MIT-BIH心律失常数据库和长期AF数据库中选择了ECG信号。基于卷积神经网络(CNN)和长期记忆(LSTM)的组合,提出的深度学习框架比大多数最先进的方法显示出令人鼓舞的结果。所提出的方法达到98.24%的平均诊断准确性。结论:成功开发和测试了使用多种心电图信号的心律失常分类的训练有素的模型。意义:由于本工作使用具有高诊断精度的光分类技术与其他值得注意的方法相比,因此可以在Holter Monitor设备中成功实施以进行心律失常检测。
translated by 谷歌翻译
飞行动物具有高度复杂的物理特征,能够使用翅膀进行敏捷操作。拍打翅膀会产生影响空气动力的复杂唤醒结构,这可能很难建模。尽管可以使用流体结构相互作用对这些力进行建模,但它在计算上非常昂贵且难以制定。在本文中,我们遵循一种更简单的方法,通过使用相对较少的状态得出空气动力,并以简单的状态空间形式呈现它们。该公式利用PrandTL的提升线理论和Wagner的功能来确定作用在机翼上的不稳定空气动力学,然后将其与蝙蝠风格的机器人的实验数据进行比较,称为Aerobat。可以从该模型中评估模拟的尾边涡流脱落,然后可以分析基于尾流的步态设计方法,以改善机器人的空气动力学性能。
translated by 谷歌翻译
鸟类等动物通过将腿部和空中迁移率与显性惯性作用相结合,广泛使用多模式运动。这种多模式运动壮举的机器人仿生型可以在协商其任务空间的能力方面产生超虚拟系统。本文的主要目的是讨论实现多模式运动的挑战,并报告我们在开发能够多模式运动(腿部和空中运动)的四足动物机器人方面的进展。我们报告了机器人中使用的机械和电气组件,除了为开发多功能多模式机器人平台实现目标的模拟和实验外。
translated by 谷歌翻译