本文提出了一种终身学习复发性神经网络的方法,例如NNARX,ESN,LSTM和GRU,在控制系统合成中被用作植物模型。该问题很重要,因为在许多实际应用中,需要在可用的新信息和/或系统进行更改时调整模型,而无需随时存储越来越多的数据。确实,在这种情况下,出现了许多问题,例如众所周知的灾难性遗忘和容量饱和。我们提出了一种受移动范围估计器启发的适应算法,从而得出了其收敛条件。所描述的方法应用于现有文献中已经具有挑战性的基准的模拟化学厂。讨论了获得的主要结果。
translated by 谷歌翻译
本文介绍了非线性MPC控制器的设计,该设计为通过神经非线性自动回归外源性(NNARX)网络描述的模型提供无抵销的设定值跟踪。 NNARX模型是从工厂收集的输入输出数据中标识的,并且可以通过过去的输入和输出变量为已知的可测量状态给出状态空间表示,因此不需要状态观察者。在训练阶段,与工厂行为一致时,可以强制强制强制输入到国家稳定性({\ delta} ISS)属性。然后,利用{\ delta} ISS属性在输出跟踪误差上采取明确的积分操作来增强模型,从而可以实现为设计的控制方案实现无抵销的跟踪功能。在水加热系统上进行了数值测试,并将所达到的结果与另一种流行的无偏移MPC方法评分的结果进行了数值测试,这表明即使在植物上作用着骚动,提出的方案也达到了显着的性能。
translated by 谷歌翻译
本文旨在讨论和分析控制设计应用中经常性神经网络(RNN)的潜力。考虑RNN的主要系列,即神经非线性自回归外源,(NNARX),回波状态网络(ESN),长短短期存储器(LSTM)和门控复发单元(GRU)。目标是双重。首先,为了调查近期RNN培训的结果,可以享受输入到状态稳定性(ISS)和增量输入到状态稳定性({\ delta} ISS)保证。其次,讨论仍然阻碍RNN进行控制的问题,即它们的鲁棒性,核算和解释性。前者属性与网络的所谓概括能力有关,即即使在视野或扰动的输入轨迹存在下,它们与底层真实植物的一致性。后者与在RNN模型和植物之间提供明确的正式连接的可能性有关。在这种情况下,我们说明了Iss和{\ delta} ISS如何朝着RNN模型的稳健性和可验证代表重大步骤,而可解释性的要求铺平了基于物理的网络的使用方式。还简要讨论了植物模型的模型预测控制器的设计。最后,在模拟化学体系上说明了本文的一些主要话题。
translated by 谷歌翻译
Recent years have seen a proliferation of research on adversarial machine learning. Numerous papers demonstrate powerful algorithmic attacks against a wide variety of machine learning (ML) models, and numerous other papers propose defenses that can withstand most attacks. However, abundant real-world evidence suggests that actual attackers use simple tactics to subvert ML-driven systems, and as a result security practitioners have not prioritized adversarial ML defenses. Motivated by the apparent gap between researchers and practitioners, this position paper aims to bridge the two domains. We first present three real-world case studies from which we can glean practical insights unknown or neglected in research. Next we analyze all adversarial ML papers recently published in top security conferences, highlighting positive trends and blind spots. Finally, we state positions on precise and cost-driven threat modeling, collaboration between industry and academia, and reproducible research. We believe that our positions, if adopted, will increase the real-world impact of future endeavours in adversarial ML, bringing both researchers and practitioners closer to their shared goal of improving the security of ML systems.
translated by 谷歌翻译
When simulating soft robots, both their morphology and their controllers play important roles in task performance. This paper introduces a new method to co-evolve these two components in the same process. We do that by using the hyperNEAT algorithm to generate two separate neural networks in one pass, one responsible for the design of the robot body structure and the other for the control of the robot. The key difference between our method and most existing approaches is that it does not treat the development of the morphology and the controller as separate processes. Similar to nature, our method derives both the "brain" and the "body" of an agent from a single genome and develops them together. While our approach is more realistic and doesn't require an arbitrary separation of processes during evolution, it also makes the problem more complex because the search space for this single genome becomes larger and any mutation to the genome affects "brain" and the "body" at the same time. Additionally, we present a new speciation function that takes into consideration both the genotypic distance, as is the standard for NEAT, and the similarity between robot bodies. By using this function, agents with very different bodies are more likely to be in different species, this allows robots with different morphologies to have more specialized controllers since they won't crossover with other robots that are too different from them. We evaluate the presented methods on four tasks and observe that even if the search space was larger, having a single genome makes the evolution process converge faster when compared to having separated genomes for body and control. The agents in our population also show morphologies with a high degree of regularity and controllers capable of coordinating the voxels to produce the necessary movements.
translated by 谷歌翻译
Filming sport videos from an aerial view has always been a hard and an expensive task to achieve, especially in sports that require a wide open area for its normal development or the ones that put in danger human safety. Recently, a new solution arose for aerial filming based on the use of Unmanned Aerial Vehicles (UAVs), which is substantially cheaper than traditional aerial filming solutions that require conventional aircrafts like helicopters or complex structures for wide mobility. In this paper, we describe the design process followed for building a customized UAV suitable for sports aerial filming. The process includes the requirements definition, technical sizing and selection of mechanical, hardware and software technologies, as well as the whole integration and operation settings. One of the goals is to develop technologies allowing to build low cost UAVs and to manage them for a wide range of usage scenarios while achieving high levels of flexibility and automation. This work also shows some technical issues found during the development of the UAV as well as the solutions implemented.
translated by 谷歌翻译
We describe a Physics-Informed Neural Network (PINN) that simulates the flow induced by the astronomical tide in a synthetic port channel, with dimensions based on the Santos - S\~ao Vicente - Bertioga Estuarine System. PINN models aim to combine the knowledge of physical systems and data-driven machine learning models. This is done by training a neural network to minimize the residuals of the governing equations in sample points. In this work, our flow is governed by the Navier-Stokes equations with some approximations. There are two main novelties in this paper. First, we design our model to assume that the flow is periodic in time, which is not feasible in conventional simulation methods. Second, we evaluate the benefit of resampling the function evaluation points during training, which has a near zero computational cost and has been verified to improve the final model, especially for small batch sizes. Finally, we discuss some limitations of the approximations used in the Navier-Stokes equations regarding the modeling of turbulence and how it interacts with PINNs.
translated by 谷歌翻译
How would you fairly evaluate two multi-object tracking algorithms (i.e. trackers), each one employing a different object detector? Detectors keep improving, thus trackers can make less effort to estimate object states over time. Is it then fair to compare a new tracker employing a new detector with another tracker using an old detector? In this paper, we propose a novel performance measure, named Tracking Effort Measure (TEM), to evaluate trackers that use different detectors. TEM estimates the improvement that the tracker does with respect to its input data (i.e. detections) at frame level (intra-frame complexity) and sequence level (inter-frame complexity). We evaluate TEM over well-known datasets, four trackers and eight detection sets. Results show that, unlike conventional tracking evaluation measures, TEM can quantify the effort done by the tracker with a reduced correlation on the input detections. Its implementation is publicly available online at https://github.com/vpulab/MOT-evaluation.
translated by 谷歌翻译
Reinforcement learning allows machines to learn from their own experience. Nowadays, it is used in safety-critical applications, such as autonomous driving, despite being vulnerable to attacks carefully crafted to either prevent that the reinforcement learning algorithm learns an effective and reliable policy, or to induce the trained agent to make a wrong decision. The literature about the security of reinforcement learning is rapidly growing, and some surveys have been proposed to shed light on this field. However, their categorizations are insufficient for choosing an appropriate defense given the kind of system at hand. In our survey, we do not only overcome this limitation by considering a different perspective, but we also discuss the applicability of state-of-the-art attacks and defenses when reinforcement learning algorithms are used in the context of autonomous driving.
translated by 谷歌翻译
This paper describes a prototype software and hardware platform to provide support to field operators during the inspection of surface defects of non-metallic pipes. Inspection is carried out by video filming defects created on the same surface in real-time using a "smart" helmet device and other mobile devices. The work focuses on the detection and recognition of the defects which appears as colored iridescence of reflected light caused by the diffraction effect arising from the presence of internal stresses in the inspected material. The platform allows you to carry out preliminary analysis directly on the device in offline mode, and, if a connection to the network is established, the received data is transmitted to the server for post-processing to extract information about possible defects that were not detected at the previous stage. The paper presents a description of the stages of design, formal description, and implementation details of the platform. It also provides descriptions of the models used to recognize defects and examples of the result of the work.
translated by 谷歌翻译