Shape can specify key object constraints, yet existing text-to-image diffusion models ignore this cue and synthesize objects that are incorrectly scaled, cut off, or replaced with background content. We propose a training-free method, Shape-Guided Diffusion, which uses a novel Inside-Outside Attention mechanism to constrain the cross-attention (and self-attention) maps such that prompt tokens (and pixels) referring to the inside of the shape cannot attend outside the shape, and vice versa. To demonstrate the efficacy of our method, we propose a new image editing task where the model must replace an object specified by its mask and a text prompt. We curate a new ShapePrompts benchmark based on MS-COCO and achieve SOTA results in shape faithfulness, text alignment, and realism according to both quantitative metrics and human preferences. Our data and code will be made available at https://shape-guided-diffusion.github.io.
translated by 谷歌翻译
可控图像合成模型允许根据文本指令或来自示例图像的指导创建不同的图像。最近,已经显示出去噪扩散概率模型比现有方法产生更现实的图像,并且已在无条件和类条件设置中成功展示。我们探索细粒度,连续控制该模型类,并引入了一种新颖的统一框架,用于语义扩散指导,允许语言或图像指导,或两者。使用图像文本或图像匹配分数的梯度将指导注入预训练的无条件扩散模型中。我们探讨基于剪辑的文本指导,以及以统一形式的基于内容和类型的图像指导。我们的文本引导综合方法可以应用于没有相关文本注释的数据集。我们对FFHQ和LSUN数据集进行实验,并显示出细粒度的文本引导图像合成的结果,与样式或内容示例图像相关的图像的合成,以及具有文本和图像引导的示例。
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
本文提出了一种简单,准确且计算上有效的方法,以将欧几里得空间中开发的普通无气体滤波器应用于在流形上发展的系统。我们使用称为稳定嵌入的数学理论来使无味的Kalman滤波器保持状态估计,以保持状态估计值在表现出色的估计性能的同时,与歧管近距离近距离。我们通过将其应用于卫星系统模型并将其与其他专门针对歧管上系统设计的非意识到的卡尔曼过滤器进行比较,确认了我们设计的过滤器的性能。我们设计的过滤器的估计误差很低,可以使状态估计与预期的歧管密切相邻,并消耗少量的计算时间。同样,我们设计的过滤器非常简单易用,因为我们的过滤器直接采用了在欧几里得空间中设计的现成的标准的无气味卡尔曼滤波器,而没有任何特定的歧管结构构造的离散方法或坐标转换。
translated by 谷歌翻译
人工智能(AI)对计算的巨大需求正在推动对AI的硬件和软件系统的无与伦比的投资。这导致了专用硬件设备数量的爆炸,现在由主要的云供应商提供。通过通过基于张量的界面隐藏低级复杂性,张量计算运行时间(TCR)(例如Pytorch)允许数据科学家有效利用新硬件提供的令人兴奋的功能。在本文中,我们探讨了数据库管理系统如何在AI空间中乘坐创新浪潮。我们设计,构建和评估张量查询处理器(TQP):TQP将SQL查询转换为张量程序,并在TCR上执行它们。 TQP能够通过在张量例程中实现与关系运算符的新颖算法来运行完整的TPC-H基准。同时,TQP可以支持各种硬件,而仅需要通常的开发工作。实验表明,与专用CPU和仅GPU的系统相比,TQP可以将查询执行时间提高到10美元$ \ times $。最后,TQP可以加速查询ML预测和SQL端到端,并在CPU基线上输送高达9 $ \ times $速度。
translated by 谷歌翻译
旋转激光雷达数据对于3D感知任务普遍存在,但尚未研究其圆柱形图像形式。传统方法将扫描视为点云,并且它们依赖于昂贵的欧几里德3D最近邻居搜索数据关联或依赖于投影范围图像以进行进一步处理。我们重新审视LIDAR扫描形成,并呈现来自原始扫描数据的圆柱形范围图像表示,配备有效校准的球形投射模型。通过我们的配方,我们1)收集一个LIDAR数据的大型数据集,包括室内和室外序列,伴随着伪接地的真理姿势;2)评估综合性和现实世界转型的序列上的投影和常规登记方法;3)将最先进的RGB-D算法转移到LIDAR,其运行高达180 Hz的注册和150 Hz以进行密集的重建。数据集和工具将被释放。
translated by 谷歌翻译
诸如GELU,LIZESION和SOFTMAX之类的非线性操作是变压器模型的必备且昂贵的构建块。有几种先前的作品简化了这些操作,使用查找表或整数计算,但是这种近似值遭受了更低的精度或相当大的硬件成本,并且长期延迟。本文提出了一种精确且硬件友好的近似框架,用于高效变压器推断。我们的框架采用简单的神经网络作为通用近似器,其结构等效地转换成LUT。拟议的框架,称为NN-LUT可以准确地更换流行伯特模型中的所有非线性操作,在面积,功耗和延迟中显着降低。
translated by 谷歌翻译
GPT-3显示了培训的大规模语言模型(LMS)的卓越情调学习能力,培训数十亿规模数据。在这里,我们解决了GPT-3纸张报告的一些剩余问题,例如非英语LM,不同大小模型的性能,以及最近引入的迅速优化对上下文学习的效果。为实现这一目标,我们介绍了HyperClova,一个韩国VPT-3的韩国变体训练在一个以韩国为中心的560b标准的令牌。通过我们的韩国特定标记化,HyperClova与我们的培训配置增强,显示了韩国各种下游任务的最先进的上下游零射击和几秒钟学习表演。此外,我们展示了基于及时的学习的性能优势,并演示如何集成到迅速的工程管道中。然后,我们讨论了通过引入Hyperclova Studio,互动提示工程界面向ML的非专家提供AI原型设计能力来实现No Code AI范例的可能性。最后,我们展示了我们具有三个成功的内部应用程序的方法的潜力。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译
Despite significant progress in object categorization, in recent years, a number of important challenges remain; mainly, the ability to learn from limited labeled data and to recognize object classes within large, potentially open, set of labels. Zero-shot learning is one way of addressing these challenges, but it has only been shown to work with limited sized class vocabularies and typically requires separation between supervised and unsupervised classes, allowing former to inform the latter but not vice versa. We propose the notion of vocabulary-informed learning to alleviate the above mentioned challenges and address problems of supervised, zero-shot, generalized zero-shot and open set recognition using a unified framework. Specifically, we propose a weighted maximum margin framework for semantic manifold-based recognition that incorporates distance constraints from (both supervised and unsupervised) vocabulary atoms. Distance constraints ensure that labeled samples are projected closer to their correct prototypes, in the embedding space, than to others. We illustrate that resulting model shows improvements in supervised, zero-shot, generalized zero-shot, and large open set recognition, with up to 310K class vocabulary on Animal with Attributes and ImageNet datasets.
translated by 谷歌翻译