捕获基于协变量的多变量响应载体之间的条件协方差或相关性对于包括神经科学,流行病学和生物医学在内的各个领域很重要。我们提出了一种新方法,称为随机森林(covregrf),以使用随机森林框架估算一个多变量响应的协方差矩阵。随机林木的建造具有专门设计的分裂规则,以最大化儿童节点的样本协方差矩阵估计值之间的差异。我们还提出了对协变量子集的部分效应的显着性检验。我们通过一项模拟研究评估了提出的方法和显着性测试的性能,该研究表明该方法提供了准确的协方差矩阵估计值,并且Type-1误差得到了很好的控制。我们还证明了该方法与甲状腺疾病数据集的应用。
translated by 谷歌翻译
自适应交通 - 信号控制的大多数强化学习方法都需要从头开始培训,或在任何新的交叉点上或对道路网络,交通分布或培训期间经历的行为约束进行任何修改后。考虑到1)训练此类方法所需的大量经验,以及2)必须通过与真实的道路网络用户进行探索方式来收集经验,因此缺乏可转移性限制的实验和适用性。最近的方法使学习政策能够概括为看不见的道路网络拓扑和交通分布,从而部分应对这一挑战。但是,文献保持在循环的学习(十字路口的连通性的演变必须尊重周期)和无环(较少约束)策略之间的分配,而这些可转移的方法1)仅与循环约束兼容,2)不启用启用。协调。我们介绍了一种新的基于模型的方法Mujam,该方法首次启用了显式配位,该方法首次启用了显式协调,还通过允许对控制器的约束进行概括,进一步推动概括。在涉及道路网络和培训期间从未经历过的交通设置的零拍传输设置中,以及在曼哈顿控制3,971个交通信号控制器的更大转移实验中,我们表明,Mujam使用环状和无循环约束,均优于范围 - 特异性基准以及另一种可转移方法。
translated by 谷歌翻译
Probabilistic Law Discovery (PLD) is a logic based Machine Learning method, which implements a variant of probabilistic rule learning. In several aspects, PLD is close to Decision Tree/Random Forest methods, but it differs significantly in how relevant rules are defined. The learning procedure of PLD solves the optimization problem related to the search for rules (called probabilistic laws), which have a minimal length and relatively high probability. At inference, ensembles of these rules are used for prediction. Probabilistic laws are human-readable and PLD based models are transparent and inherently interpretable. Applications of PLD include classification/clusterization/regression tasks, as well as time series analysis/anomaly detection and adaptive (robotic) control. In this paper, we outline the main principles of PLD, highlight its benefits and limitations and provide some application guidelines.
translated by 谷歌翻译
We study the multiclass classification problem where the features come from the mixture of time-homogeneous diffusions. Specifically, the classes are discriminated by their drift functions while the diffusion coefficient is common to all classes and unknown. In this framework, we build a plug-in classifier which relies on nonparametric estimators of the drift and diffusion functions. We first establish the consistency of our classification procedure under mild assumptions and then provide rates of cnvergence under different set of assumptions. Finally, a numerical study supports our theoretical findings.
translated by 谷歌翻译
In many real-world scenarios, the absence of external knowledge source like Wikipedia restricts question answering systems to rely on latent internal knowledge in limited dialogue data. In addition, humans often seek answers by asking several questions for more comprehensive information. As the dialog becomes more extensive, machines are challenged to refer to previous conversation rounds to answer questions. In this work, we propose to leverage latent knowledge in existing conversation logs via a neural Retrieval-Reading system, enhanced with a TFIDF-based text summarizer refining lengthy conversational history to alleviate the long context issue. Our experiments show that our Retrieval-Reading system can exploit retrieved background knowledge to generate significantly better answers. The results also indicate that our context summarizer significantly helps both the retriever and the reader by introducing more concise and less noisy contextual information.
translated by 谷歌翻译
Transformer models have achieved superior performance in various natural language processing tasks. However, the quadratic computational cost of the attention mechanism limits its practicality for long sequences. There are existing attention variants that improve the computational efficiency, but they have limited ability to effectively compute global information. In parallel to Transformer models, state space models (SSMs) are tailored for long sequences, but they are not flexible enough to capture complicated local information. We propose SPADE, short for $\underline{\textbf{S}}$tate s$\underline{\textbf{P}}$ace $\underline{\textbf{A}}$ugmente$\underline{\textbf{D}}$ Transform$\underline{\textbf{E}}$r. Specifically, we augment a SSM into the bottom layer of SPADE, and we employ efficient local attention methods for the other layers. The SSM augments global information, which complements the lack of long-range dependency issue in local attention methods. Experimental results on the Long Range Arena benchmark and language modeling tasks demonstrate the effectiveness of the proposed method. To further demonstrate the scalability of SPADE, we pre-train large encoder-decoder models and present fine-tuning results on natural language understanding and natural language generation tasks.
translated by 谷歌翻译
Pre-trained language models (PLM) have advanced the state-of-the-art across NLP applications, but lack domain-specific knowledge that does not naturally occur in pre-training data. Previous studies augmented PLMs with symbolic knowledge for different downstream NLP tasks. However, knowledge bases (KBs) utilized in these studies are usually large-scale and static, in contrast to small, domain-specific, and modifiable knowledge bases that are prominent in real-world task-oriented dialogue (TOD) systems. In this paper, we showcase the advantages of injecting domain-specific knowledge prior to fine-tuning on TOD tasks. To this end, we utilize light-weight adapters that can be easily integrated with PLMs and serve as a repository for facts learned from different KBs. To measure the efficacy of proposed knowledge injection methods, we introduce Knowledge Probing using Response Selection (KPRS) -- a probe designed specifically for TOD models. Experiments on KPRS and the response generation task show improvements of knowledge injection with adapters over strong baselines.
translated by 谷歌翻译
Creating realistic virtual assets is a time-consuming process: it usually involves an artist designing the object, then spending a lot of effort on tweaking its appearance. Intricate details and certain effects, such as subsurface scattering, elude representation using real-time BRDFs, making it impossible to fully capture the appearance of certain objects. Inspired by the recent progress of neural rendering, we propose an approach for capturing real-world objects in everyday environments faithfully and fast. We use a novel neural representation to reconstruct volumetric effects, such as translucent object parts, and preserve photorealistic object appearance. To support real-time rendering without compromising rendering quality, our model uses a grid of features and a small MLP decoder that is transpiled into efficient shader code with interactive framerates. This leads to a seamless integration of the proposed neural assets with existing mesh environments and objects. Thanks to the use of standard shader code rendering is portable across many existing hardware and software systems.
translated by 谷歌翻译
In 2016-2017, TUS, the world's first experiment for testing the possibility of registering ultra-high energy cosmic rays (UHECRs) by their fluorescent radiation in the night atmosphere of Earth was carried out. Since 2019, the Russian-Italian fluorescence telescope (FT) Mini-EUSO ("UV Atmosphere") has been operating on the ISS. The stratospheric experiment EUSO-SPB2, which will employ an FT for registering UHECRs, is planned for 2023. We show how a simple convolutional neural network can be effectively used to find track-like events in the variety of data obtained with such instruments.
translated by 谷歌翻译
A prominent approach to solving combinatorial optimization problems on parallel hardware is Ising machines, i.e., hardware implementations of networks of interacting binary spin variables. Most Ising machines leverage second-order interactions although important classes of optimization problems, such as satisfiability problems, map more seamlessly to Ising networks with higher-order interactions. Here, we demonstrate that higher-order Ising machines can solve satisfiability problems more resource-efficiently in terms of the number of spin variables and their connections when compared to traditional second-order Ising machines. Further, our results show on a benchmark dataset of Boolean \textit{k}-satisfiability problems that higher-order Ising machines implemented with coupled oscillators rapidly find solutions that are better than second-order Ising machines, thus, improving the current state-of-the-art for Ising machines.
translated by 谷歌翻译