AI。破坏和创新竞争的需求正在影响成为创新热点有必要的城市。但是,如果没有经过验证的解决方案,就需要实验,通常不成功。但是,在城市中进行的实验不仅对其公民产生了许多不良影响,而且如果失败的话,也有声誉。在其他领域如此受欢迎的数字双胞胎似乎是扩展实验建议的一种有前途的方法,但是在模拟环境中,只能翻译出半熟的人,即成功的可能性较高的人,将其转化为真实的环境,从而最大程度地减少风险。但是,数字双胞胎是数据密集的,需要高度局部数据,使其难以扩展,尤其是对于小城市,并且与数据收集相关的高成本。我们提出了一种基于合成数据的替代方案,该替代方案给定在智能城市中很常见的某些条件,可以解决这两个问题以及基于NO2污染的概念验证。
translated by 谷歌翻译
移动设备通过深神经网络(DNN)越来越依赖对象检测(OD)来执行关键任务。由于它们的复杂性高,这些DNN的执行需要过度的时间和能量。低复杂性对象跟踪(OT)可以与OD一起使用,后者定期应用后,以生成“新鲜”的跟踪参考。然而,使用OD处理的帧产生大的延迟,这可以使参考延迟过时并降低跟踪质量。这里,我们建议在这种情况下使用边缘计算,并在对大OD延迟中建立并行OT(在移动设备上)和OD(处于边缘服务器)的进程。我们提出Katch-Up,一种新型跟踪机制,可提高系统弹性过度OD延迟。但是,虽然Katch-up显着提高了性能,但它也增加了移动设备的计算负荷。因此,我们设计SmartDet,基于深度加强学习(DRL)的低复杂性控制器,了解资源利用率和OD性能之间的权衡。 SmartDet作为输入上下文相关信息与当前视频内容相关的信息和当前网络条件,以优化OD卸载的频率和类型,以及Katch-Up利用率。我们在通过Wi-Fi链路连接的GTX 980 TI为移动设备和GTX 980 TI,广泛地评估SmartDet。实验结果表明,SmartDET在跟踪性能 - 平均召回(MAR)和资源使用之间实现了最佳平衡。关于具有完全Katch-Upusage和最大渠道使用的基线,我们仍然将MAR增加4%,同时使用50%的通道和与Katch-Up相关的30%电力资源。对于使用最小资源的固定策略,我们在使用katch-up在框架的1/3上时,我们将MAR增加20%。
translated by 谷歌翻译
尽管关键任务应用需要使用深神经网络(DNN),但它们在移动设备的连续执行导致能耗的显着增加。虽然边缘卸载可以降低能量消耗,但信道质量,网络和边缘服务器负载中的不稳定模式可能导致系统的关键操作严重中断。一种被称为分割计算的替代方法,在模型中生成压缩表示(称为“瓶颈”),以降低带宽使用和能量消耗。事先工作已经提出了引入额外层的方法,以损害能耗和潜伏期。因此,我们提出了一个名为BoleFit的新框架,除了有针对性的DNN架构修改之外,还包括一种新颖的培训策略,即使具有强大的压缩速率,即使具有强大的压缩速率也能实现高精度。我们在图像分类中施加瓶装装饰品,并显示瓶装装备在想象中数据集中实现了77.1%的数据压缩,高达0.6%的精度损耗,而诸如Spinn的最佳精度高达6%。我们通过实验测量在NVIDIA Jetson Nano板(基于GPU)和覆盆子PI板上运行的图像分类应用的功耗和等待时间(GPU - 更低)。我们表明,对于(W.R.T.)本地计算分别降低了高达49%和89%的功耗和延迟,局部计算和37%和55%W.r.t.t.边缘卸载。我们还比较了具有基于最先进的自动化器的方法的瓶装方法,并显示了(i)瓶子分别将功耗和执行时间降低了高达54%和44%,覆盆子上的40%和62% pi; (ii)在移动设备上执行的头部模型的大小为83倍。代码存储库将被公布以获得结果的完全可重复性。
translated by 谷歌翻译
An Anomaly Detection (AD) System for Self-diagnosis has been developed for Multiphase Flow Meter (MPFM). The system relies on machine learning algorithms for time series forecasting, historical data have been used to train a model and to predict the behavior of a sensor and, thus, to detect anomalies.
translated by 谷歌翻译
Data-driven soft sensors are extensively used in industrial and chemical processes to predict hard-to-measure process variables whose real value is difficult to track during routine operations. The regression models used by these sensors often require a large number of labeled examples, yet obtaining the label information can be very expensive given the high time and cost required by quality inspections. In this context, active learning methods can be highly beneficial as they can suggest the most informative labels to query. However, most of the active learning strategies proposed for regression focus on the offline setting. In this work, we adapt some of these approaches to the stream-based scenario and show how they can be used to select the most informative data points. We also demonstrate how to use a semi-supervised architecture based on orthogonal autoencoders to learn salient features in a lower dimensional space. The Tennessee Eastman Process is used to compare the predictive performance of the proposed approaches.
translated by 谷歌翻译
Anomaly Detection is a relevant problem that arises in numerous real-world applications, especially when dealing with images. However, there has been little research for this task in the Continual Learning setting. In this work, we introduce a novel approach called SCALE (SCALing is Enough) to perform Compressed Replay in a framework for Anomaly Detection in Continual Learning setting. The proposed technique scales and compresses the original images using a Super Resolution model which, to the best of our knowledge, is studied for the first time in the Continual Learning setting. SCALE can achieve a high level of compression while maintaining a high level of image reconstruction quality. In conjunction with other Anomaly Detection approaches, it can achieve optimal results. To validate the proposed approach, we use a real-world dataset of images with pixel-based anomalies, with the scope to provide a reliable benchmark for Anomaly Detection in the context of Continual Learning, serving as a foundation for further advancements in the field.
translated by 谷歌翻译
In this paper we present TruFor, a forensic framework that can be applied to a large variety of image manipulation methods, from classic cheapfakes to more recent manipulations based on deep learning. We rely on the extraction of both high-level and low-level traces through a transformer-based fusion architecture that combines the RGB image and a learned noise-sensitive fingerprint. The latter learns to embed the artifacts related to the camera internal and external processing by training only on real data in a self-supervised manner. Forgeries are detected as deviations from the expected regular pattern that characterizes each pristine image. Looking for anomalies makes the approach able to robustly detect a variety of local manipulations, ensuring generalization. In addition to a pixel-level localization map and a whole-image integrity score, our approach outputs a reliability map that highlights areas where localization predictions may be error-prone. This is particularly important in forensic applications in order to reduce false alarms and allow for a large scale analysis. Extensive experiments on several datasets show that our method is able to reliably detect and localize both cheapfakes and deepfakes manipulations outperforming state-of-the-art works. Code will be publicly available at https://grip-unina.github.io/TruFor/
translated by 谷歌翻译
A systematic review on machine-learning strategies for improving generalizability (cross-subjects and cross-sessions) electroencephalography (EEG) based in emotion classification was realized. In this context, the non-stationarity of EEG signals is a critical issue and can lead to the Dataset Shift problem. Several architectures and methods have been proposed to address this issue, mainly based on transfer learning methods. 418 papers were retrieved from the Scopus, IEEE Xplore and PubMed databases through a search query focusing on modern machine learning techniques for generalization in EEG-based emotion assessment. Among these papers, 75 were found eligible based on their relevance to the problem. Studies lacking a specific cross-subject and cross-session validation strategy and making use of other biosignals as support were excluded. On the basis of the selected papers' analysis, a taxonomy of the studies employing Machine Learning (ML) methods was proposed, together with a brief discussion on the different ML approaches involved. The studies with the best results in terms of average classification accuracy were identified, supporting that transfer learning methods seem to perform better than other approaches. A discussion is proposed on the impact of (i) the emotion theoretical models and (ii) psychological screening of the experimental sample on the classifier performances.
translated by 谷歌翻译
Recent work has reported that AI classifiers trained on audio recordings can accurately predict severe acute respiratory syndrome coronavirus 2 (SARSCoV2) infection status. Here, we undertake a large scale study of audio-based deep learning classifiers, as part of the UK governments pandemic response. We collect and analyse a dataset of audio recordings from 67,842 individuals with linked metadata, including reverse transcription polymerase chain reaction (PCR) test outcomes, of whom 23,514 tested positive for SARS CoV 2. Subjects were recruited via the UK governments National Health Service Test-and-Trace programme and the REal-time Assessment of Community Transmission (REACT) randomised surveillance survey. In an unadjusted analysis of our dataset AI classifiers predict SARS-CoV-2 infection status with high accuracy (Receiver Operating Characteristic Area Under the Curve (ROCAUC) 0.846 [0.838, 0.854]) consistent with the findings of previous studies. However, after matching on measured confounders, such as age, gender, and self reported symptoms, our classifiers performance is much weaker (ROC-AUC 0.619 [0.594, 0.644]). Upon quantifying the utility of audio based classifiers in practical settings, we find them to be outperformed by simple predictive scores based on user reported symptoms.
translated by 谷歌翻译
Since early in the coronavirus disease 2019 (COVID-19) pandemic, there has been interest in using artificial intelligence methods to predict COVID-19 infection status based on vocal audio signals, for example cough recordings. However, existing studies have limitations in terms of data collection and of the assessment of the performances of the proposed predictive models. This paper rigorously assesses state-of-the-art machine learning techniques used to predict COVID-19 infection status based on vocal audio signals, using a dataset collected by the UK Health Security Agency. This dataset includes acoustic recordings and extensive study participant meta-data. We provide guidelines on testing the performance of methods to classify COVID-19 infection status based on acoustic features and we discuss how these can be extended more generally to the development and assessment of predictive methods based on public health datasets.
translated by 谷歌翻译