电网已成为日常生活的重要组成部分,即使在日常生活中经常没有注意到它们。我们通常只会在不再可用的电网时特别了解这种依赖性。但是,重大变化,例如过渡到可再生能源(光伏,风力涡轮机等)以及具有复杂负载剖面(电动汽车,家用电池系统等)的越来越多的能源消费者,对电力构成了新的挑战网格。为了应对这些挑战,我们根据宽带电力线通信(PLC)基础架构中的测量结果提出了两个首先数据集。数据集FIN-1和FIN-2均在德国低压电网的一部分实际使用期间收集,该电网供应约440万人,并显示了超过5100个传感器收集的130亿个数据点。此外,我们在资产管理,网格状态可视化,预测,预测维护和新颖性检测中提出不同的用例,以突出这些类型的数据的好处。对于这些应用程序,我们特别强调了使用新颖的机器学习体系结构从现实世界数据中提取丰富信息,这些信息无法使用传统方法捕获。通过发布第一个大型现实世界数据集,我们旨在阐明PLC数据的先前很大程度上未识别的潜力,并通过呈现各种不同的用例来强调低压分布网络中基于机器的研究。
translated by 谷歌翻译
人们普遍认为,人类视觉系统偏向于识别形状而不是纹理。这一假设导致了越来越多的工作,旨在使深层模型的决策过程与人类视野的基本特性保持一致。人们对形状特征的依赖主要预计会改善协变量转移下这些模型的鲁棒性。在本文中,我们重新审视了形状偏置对皮肤病变图像分类的重要性。我们的分析表明,不同的皮肤病变数据集对单个图像特征表现出不同的偏见。有趣的是,尽管深层提取器倾向于学习对皮肤病变分类的纠缠特征,但仍然可以从该纠缠的表示形式中解码单个特征。这表明这些功能仍在模型的学习嵌入空间中表示,但不用于分类。此外,不同数据集的光谱分析表明,与常见的视觉识别相反,皮肤皮肤病变分类本质上依赖于超出形状偏置的复杂特征组合。自然的结果,在某些情况下,摆脱了形状偏见模型的普遍欲望甚至可以改善皮肤病变分类器。
translated by 谷歌翻译
Deep-learning of artificial neural networks (ANNs) is creating highly functional tools that are, unfortunately, as hard to interpret as their natural counterparts. While it is possible to identify functional modules in natural brains using technologies such as fMRI, we do not have at our disposal similarly robust methods for artificial neural networks. Ideally, understanding which parts of an artificial neural network perform what function might help us to address a number of vexing problems in ANN research, such as catastrophic forgetting and overfitting. Furthermore, revealing a network's modularity could improve our trust in them by making these black boxes more transparent. Here we introduce a new information-theoretic concept that proves useful in understanding and analyzing a network's functional modularity: the relay information $I_R$. The relay information measures how much information groups of neurons that participate in a particular function (modules) relay from inputs to outputs. Combined with a greedy search algorithm, relay information can be used to {\em identify} computational modules in neural networks. We also show that the functionality of modules correlates with the amount of relay information they carry.
translated by 谷歌翻译
Cashews are grown by over 3 million smallholders in more than 40 countries worldwide as a principal source of income. As the third largest cashew producer in Africa, Benin has nearly 200,000 smallholder cashew growers contributing 15% of the country's national export earnings. However, a lack of information on where and how cashew trees grow across the country hinders decision-making that could support increased cashew production and poverty alleviation. By leveraging 2.4-m Planet Basemaps and 0.5-m aerial imagery, newly developed deep learning algorithms, and large-scale ground truth datasets, we successfully produced the first national map of cashew in Benin and characterized the expansion of cashew plantations between 2015 and 2021. In particular, we developed a SpatioTemporal Classification with Attention (STCA) model to map the distribution of cashew plantations, which can fully capture texture information from discriminative time steps during a growing season. We further developed a Clustering Augmented Self-supervised Temporal Classification (CASTC) model to distinguish high-density versus low-density cashew plantations by automatic feature extraction and optimized clustering. Results show that the STCA model has an overall accuracy of 80% and the CASTC model achieved an overall accuracy of 77.9%. We found that the cashew area in Benin has doubled from 2015 to 2021 with 60% of new plantation development coming from cropland or fallow land, while encroachment of cashew plantations into protected areas has increased by 70%. Only half of cashew plantations were high-density in 2021, suggesting high potential for intensification. Our study illustrates the power of combining high-resolution remote sensing imagery and state-of-the-art deep learning algorithms to better understand tree crops in the heterogeneous smallholder landscape.
translated by 谷歌翻译
Local patterns play an important role in statistical physics as well as in image processing. Two-dimensional ordinal patterns were studied by Ribeiro et al. who determined permutation entropy and complexity in order to classify paintings and images of liquid crystals. Here we find that the 2 by 2 patterns of neighboring pixels come in three types. The statistics of these types, expressed by two parameters, contains the relevant information to describe and distinguish textures. The parameters are most stable and informative for isotropic structures.
translated by 谷歌翻译
It is well known that conservative mechanical systems exhibit local oscillatory behaviours due to their elastic and gravitational potentials, which completely characterise these periodic motions together with the inertial properties of the system. The classification of these periodic behaviours and their geometric characterisation are in an on-going secular debate, which recently led to the so-called eigenmanifold theory. The eigenmanifold characterises nonlinear oscillations as a generalisation of linear eigenspaces. With the motivation of performing periodic tasks efficiently, we use tools coming from this theory to construct an optimization problem aimed at inducing desired closed-loop oscillations through a state feedback law. We solve the constructed optimization problem via gradient-descent methods involving neural networks. Extensive simulations show the validity of the approach.
translated by 谷歌翻译
Artificial intelligence(AI) systems based on deep neural networks (DNNs) and machine learning (ML) algorithms are increasingly used to solve critical problems in bioinformatics, biomedical informatics, and precision medicine. However, complex DNN or ML models that are unavoidably opaque and perceived as black-box methods, may not be able to explain why and how they make certain decisions. Such black-box models are difficult to comprehend not only for targeted users and decision-makers but also for AI developers. Besides, in sensitive areas like healthcare, explainability and accountability are not only desirable properties of AI but also legal requirements -- especially when AI may have significant impacts on human lives. Explainable artificial intelligence (XAI) is an emerging field that aims to mitigate the opaqueness of black-box models and make it possible to interpret how AI systems make their decisions with transparency. An interpretable ML model can explain how it makes predictions and which factors affect the model's outcomes. The majority of state-of-the-art interpretable ML methods have been developed in a domain-agnostic way and originate from computer vision, automated reasoning, or even statistics. Many of these methods cannot be directly applied to bioinformatics problems, without prior customization, extension, and domain adoption. In this paper, we discuss the importance of explainability with a focus on bioinformatics. We analyse and comprehensively overview of model-specific and model-agnostic interpretable ML methods and tools. Via several case studies covering bioimaging, cancer genomics, and biomedical text mining, we show how bioinformatics research could benefit from XAI methods and how they could help improve decision fairness.
translated by 谷歌翻译
Generic Object Tracking (GOT) is the problem of tracking target objects, specified by bounding boxes in the first frame of a video. While the task has received much attention in the last decades, researchers have almost exclusively focused on the single object setting. Multi-object GOT benefits from a wider applicability, rendering it more attractive in real-world applications. We attribute the lack of research interest into this problem to the absence of suitable benchmarks. In this work, we introduce a new large-scale GOT benchmark, LaGOT, containing multiple annotated target objects per sequence. Our benchmark allows researchers to tackle key remaining challenges in GOT, aiming to increase robustness and reduce computation through joint tracking of multiple objects simultaneously. Furthermore, we propose a Transformer-based GOT tracker TaMOS capable of joint processing of multiple objects through shared computation. TaMOs achieves a 4x faster run-time in case of 10 concurrent objects compared to tracking each object independently and outperforms existing single object trackers on our new benchmark. Finally, TaMOs achieves highly competitive results on single-object GOT datasets, setting a new state-of-the-art on TrackingNet with a success rate AUC of 84.4%. Our benchmark, code, and trained models will be made publicly available.
translated by 谷歌翻译
In recent years the applications of machine learning models have increased rapidly, due to the large amount of available data and technological progress.While some domains like web analysis can benefit from this with only minor restrictions, other fields like in medicine with patient data are strongerregulated. In particular \emph{data privacy} plays an important role as recently highlighted by the trustworthy AI initiative of the EU or general privacy regulations in legislation. Another major challenge is, that the required training \emph{data is} often \emph{distributed} in terms of features or samples and unavailable for classicalbatch learning approaches. In 2016 Google came up with a framework, called \emph{Federated Learning} to solve both of these problems. We provide a brief overview on existing Methods and Applications in the field of vertical and horizontal \emph{Federated Learning}, as well as \emph{Fderated Transfer Learning}.
translated by 谷歌翻译
Algorithms that involve both forecasting and optimization are at the core of solutions to many difficult real-world problems, such as in supply chains (inventory optimization), traffic, and in the transition towards carbon-free energy generation in battery/load/production scheduling in sustainable energy systems. Typically, in these scenarios we want to solve an optimization problem that depends on unknown future values, which therefore need to be forecast. As both forecasting and optimization are difficult problems in their own right, relatively few research has been done in this area. This paper presents the findings of the ``IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling," held in 2021. We present a comparison and evaluation of the seven highest-ranked solutions in the competition, to provide researchers with a benchmark problem and to establish the state of the art for this benchmark, with the aim to foster and facilitate research in this area. The competition used data from the Monash Microgrid, as well as weather data and energy market data. It then focused on two main challenges: forecasting renewable energy production and demand, and obtaining an optimal schedule for the activities (lectures) and on-site batteries that lead to the lowest cost of energy. The most accurate forecasts were obtained by gradient-boosted tree and random forest models, and optimization was mostly performed using mixed integer linear and quadratic programming. The winning method predicted different scenarios and optimized over all scenarios jointly using a sample average approximation method.
translated by 谷歌翻译