我们引入了一个具有隐式规范正规化的概率模型,用于学习非负矩阵分解(NMF),该模型通常用于预测缺失值并在数据中找到隐藏模式,其中矩阵因子是与每个数据维度相关的潜在变量。潜在因素的非负限制是通过选择基于指数函数的指数密度或分布的支持的先验来处理的。采用基于Gibbs抽样的贝叶斯推理程序。我们在几个现实世界数据集上评估了该模型,包括癌症中药物敏感性的基因组学(GDSC $ ic_ {50} $)和具有不同尺寸和尺寸的基因体甲基化,并表明拟议的贝叶斯NMF GL $ _2^2^2 $ and and anGL $ _ \ infty $模型可以对不同的数据值进行强大的预测,并避免与竞争性贝叶斯NMF方法相比过度拟合。
translated by 谷歌翻译
Restless multi-armed bandits are often used to model budget-constrained resource allocation tasks where receipt of the resource is associated with an increased probability of a favorable state transition. Prior work assumes that individual arms only benefit if they receive the resource directly. However, many allocation tasks occur within communities and can be characterized by positive externalities that allow arms to derive partial benefit when their neighbor(s) receive the resource. We thus introduce networked restless bandits, a novel multi-armed bandit setting in which arms are both restless and embedded within a directed graph. We then present Greta, a graph-aware, Whittle index-based heuristic algorithm that can be used to efficiently construct a constrained reward-maximizing action vector at each timestep. Our empirical results demonstrate that Greta outperforms comparison policies across a range of hyperparameter values and graph topologies.
translated by 谷歌翻译
疟疾是一种威胁生命的疾病,影响了数百万。基于显微镜的薄膜评估是(i)确定疟疾物种和(ii)定量高寄生虫感染的标准方法。通过机器学习(ML)对疟疾显微镜的完全自动化是一项具有挑战性的任务,因为预先准备的滑动在质量和表现方面差异很大,并且伪像通常超过相对较少的寄生虫。在这项工作中,我们描述了一个用于薄膜疟疾分析的完整,完全自动化的框架,该框架应用了ML方法,包括卷积神经网(CNN),该方法在大型且多样化的田间预先准备的薄膜数据集中进行了训练。定量和物种鉴定结果几乎足够准确地满足了耐药性监测和临床用例的混凝土需求。我们将方法和性能指标集中在现场用例要求上。我们讨论了将ML方法应用于疟疾显微镜的关键问题和重要指标。
translated by 谷歌翻译
Accurate determination of a small molecule candidate (ligand) binding pose in its target protein pocket is important for computer-aided drug discovery. Typical rigid-body docking methods ignore the pocket flexibility of protein, while the more accurate pose generation using molecular dynamics is hindered by slow protein dynamics. We develop a tiered tensor transform (3T) algorithm to rapidly generate diverse protein-ligand complex conformations for both pose and affinity estimation in drug screening, requiring neither machine learning training nor lengthy dynamics computation, while maintaining both coarse-grain-like coordinated protein dynamics and atomistic-level details of the complex pocket. The 3T conformation structures we generate are closer to experimental co-crystal structures than those generated by docking software, and more importantly achieve significantly higher accuracy in active ligand classification than traditional ensemble docking using hundreds of experimental protein conformations. 3T structure transformation is decoupled from the system physics, making future usage in other computational scientific domains possible.
translated by 谷歌翻译
Variational autoencoders model high-dimensional data by positing low-dimensional latent variables that are mapped through a flexible distribution parametrized by a neural network. Unfortunately, variational autoencoders often suffer from posterior collapse: the posterior of the latent variables is equal to its prior, rendering the variational autoencoder useless as a means to produce meaningful representations. Existing approaches to posterior collapse often attribute it to the use of neural networks or optimization issues due to variational approximation. In this paper, we consider posterior collapse as a problem of latent variable non-identifiability. We prove that the posterior collapses if and only if the latent variables are non-identifiable in the generative model. This fact implies that posterior collapse is not a phenomenon specific to the use of flexible distributions or approximate inference. Rather, it can occur in classical probabilistic models even with exact inference, which we also demonstrate. Based on these results, we propose a class of latent-identifiable variational autoencoders, deep generative models which enforce identifiability without sacrificing flexibility. This model class resolves the problem of latent variable non-identifiability by leveraging bijective Brenier maps and parameterizing them with input convex neural networks, without special variational inference objectives or optimization tricks. Across synthetic and real datasets, latent-identifiable variational autoencoders outperform existing methods in mitigating posterior collapse and providing meaningful representations of the data.
translated by 谷歌翻译
Differentiable Architecture Search (DARTS) has attracted considerable attention as a gradient-based Neural Architecture Search (NAS) method. Since the introduction of DARTS, there has been little work done on adapting the action space based on state-of-art architecture design principles for CNNs. In this work, we aim to address this gap by incrementally augmenting the DARTS search space with micro-design changes inspired by ConvNeXt and studying the trade-off between accuracy, evaluation layer count, and computational cost. To this end, we introduce the Pseudo-Inverted Bottleneck conv block intending to reduce the computational footprint of the inverted bottleneck block proposed in ConvNeXt. Our proposed architecture is much less sensitive to evaluation layer count and outperforms a DARTS network with similar size significantly, at layer counts as small as 2. Furthermore, with less layers, not only does it achieve higher accuracy with lower GMACs and parameter count, GradCAM comparisons show that our network is able to better detect distinctive features of target objects compared to DARTS.
translated by 谷歌翻译
Deep learning techniques with neural networks have been used effectively in computational fluid dynamics (CFD) to obtain solutions to nonlinear differential equations. This paper presents a physics-informed neural network (PINN) approach to solve the Blasius function. This method eliminates the process of changing the non-linear differential equation to an initial value problem. Also, it tackles the convergence issue arising in the conventional series solution. It is seen that this method produces results that are at par with the numerical and conventional methods. The solution is extended to the negative axis to show that PINNs capture the singularity of the function at $\eta=-5.69$
translated by 谷歌翻译
The Government of Kerala had increased the frequency of supply of free food kits owing to the pandemic, however, these items were static and not indicative of the personal preferences of the consumers. This paper conducts a comparative analysis of various clustering techniques on a scaled-down version of a real-world dataset obtained through a conjoint analysis-based survey. Clustering carried out by centroid-based methods such as k means is analyzed and the results are plotted along with SVD, and finally, a conclusion is reached as to which among the two is better. Once the clusters have been formulated, commodities are also decided upon for each cluster. Also, clustering is further enhanced by reassignment, based on a specific cluster loss threshold. Thus, the most efficacious clustering technique for designing a food kit tailored to the needs of individuals is finally obtained.
translated by 谷歌翻译
Learning efficient and interpretable policies has been a challenging task in reinforcement learning (RL), particularly in the visual RL setting with complex scenes. While neural networks have achieved competitive performance, the resulting policies are often over-parameterized black boxes that are difficult to interpret and deploy efficiently. More recent symbolic RL frameworks have shown that high-level domain-specific programming logic can be designed to handle both policy learning and symbolic planning. However, these approaches rely on coded primitives with little feature learning, and when applied to high-dimensional visual scenes, they can suffer from scalability issues and perform poorly when images have complex object interactions. To address these challenges, we propose \textit{Differentiable Symbolic Expression Search} (DiffSES), a novel symbolic learning approach that discovers discrete symbolic policies using partially differentiable optimization. By using object-level abstractions instead of raw pixel-level inputs, DiffSES is able to leverage the simplicity and scalability advantages of symbolic expressions, while also incorporating the strengths of neural networks for feature learning and optimization. Our experiments demonstrate that DiffSES is able to generate symbolic policies that are simpler and more and scalable than state-of-the-art symbolic RL methods, with a reduced amount of symbolic prior knowledge.
translated by 谷歌翻译
Tumor-stroma ratio (TSR) is a prognostic factor for many types of solid tumors. In this study, we propose a method for automated estimation of TSR from histopathological images of colorectal cancer. The method is based on convolutional neural networks which were trained to classify colorectal cancer tissue in hematoxylin-eosin stained samples into three classes: stroma, tumor and other. The models were trained using a data set that consists of 1343 whole slide images. Three different training setups were applied with a transfer learning approach using domain-specific data i.e. an external colorectal cancer histopathological data set. The three most accurate models were chosen as a classifier, TSR values were predicted and the results were compared to a visual TSR estimation made by a pathologist. The results suggest that classification accuracy does not improve when domain-specific data are used in the pre-training of the convolutional neural network models in the task at hand. Classification accuracy for stroma, tumor and other reached 96.1$\%$ on an independent test set. Among the three classes the best model gained the highest accuracy (99.3$\%$) for class tumor. When TSR was predicted with the best model, the correlation between the predicted values and values estimated by an experienced pathologist was 0.57. Further research is needed to study associations between computationally predicted TSR values and other clinicopathological factors of colorectal cancer and the overall survival of the patients.
translated by 谷歌翻译