准确的术中诊断对于在脑肿瘤手术期间提供安全有效的护理至关重要。我们的护理标准诊断方法是时间,资源和劳动密集型,限制了获得最佳手术治疗的机会。为了解决这些局限性,我们提出了一种替代工作流程,该工作流程结合了刺激的拉曼组织学(SRH),一种快速的光学成像方法,以及对SRH图像的深层自动解释,用于术中脑肿瘤诊断和实时手术决策支持。在这里,我们介绍了OpenSRH,这是来自300多名脑肿瘤患者和1300多个独特全幻灯片光学图像的第一个公共数据集。 OPENSRH包含来自最常见的脑肿瘤诊断,完整的病理注释,整个幻灯片肿瘤分割,原始和加工的光学成像数据的数据,用于端到端模型的开发和验证。我们为使用弱(即患者级)诊断标签的基于补丁的整个幻灯片分类和推断提供了一个框架。最后,我们基准了两项计算机视觉任务:多类组织学脑肿瘤分类和基于斑块的对比表示学习。我们希望OpenSRH能够促进快速光学成像和基于ML的手术决策支持的临床翻译,以提高精密医学时代的癌症手术的获取,安全性和功效。数据集访问,代码和基准可在opensrh.mlins.org上找到。
translated by 谷歌翻译
人工智能的扩散越来越依赖于模型理解。理解既需要一种解释 - 关于模型行为的人类推理,又是解释 - 模型功能的象征性表示。尽管必须对安全性,信任和接受的透明度,但最先进的强化学习算法的不透明性掩盖了其学习策略的基础。我们已经开发了一种政策正规化方法,该方法主张了学识渊博的策略的全球固有亲和力。这些亲和力提供了一种关于政策行为的推理手段,从而使其固有地解释。我们已经在个性化的繁荣管理中展示了我们的方法,其中个人的支出行为及时决定了他们的投资策略,即不同的支出人物可能与不同的投资类别有不同的关联。现在,我们通过使用离散的Markov模型重现潜在的原型策略来解释我们的模型。这些全球替代物是原型政策的符号表示。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
将强化学习(RL)应用于资产管理的共同目的是利润的最大化。用于学习最佳策略的外部奖励功能通常不会考虑任何其他偏好或约束。我们已经开发了一种正则化方法,该方法可确保策略具有全球固有亲和力,即,不同的个性可能对某些资产可能会随着时间而改变。我们利用这些内在政策亲和力,使我们的RL模型固有地解释。我们演示了如何对RL代理进行培训,以为特定的个性概况编排此类政策,并仍然获得高回报。
translated by 谷歌翻译
每年在美国犯下数十个恐怖袭击,往往会导致死亡和其他重大损害。在更好地理解和减轻这些攻击的结束时,我们展示了一组机器学习模型,用于从本地化的新闻数据中学习,以预测恐怖主义攻击是否将在给定的日历日期和给定状态上发生。最佳模型 - 一种随机森林,了解特征空间的新型可变长度移动平均表示 - 在接收器经营特征下实现的地区分数为$> .667美元,这是由恐怖主义影响最多的五个州的四个国家在2015年和2018年之间。我们的主要发现包括将恐怖主义建模为一系列独立事件,而不是作为一个持续的过程,是一种富有成果的方法 - 尤其是当事件稀疏和异常时。此外,我们的结果突出了对位置之间的差异的本地化模型的需求。从机器学习的角度来看,我们发现随机森林模型在我们的多模式,嘈杂和不平衡数据集上表现出几种深刻的模型,从而展示了我们的新颖特征表示方法在这种情况下的功效。我们还表明,其预测是对攻击之间的时间差距和观察到攻击特征的预测相对稳健。最后,我们分析了限制模型性能的因素,包括嘈杂的特征空间和少量可用数据。这些贡献为利用机器学习在美国及以后的恐怖主义努力中提供了重要的基础。
translated by 谷歌翻译
金融部门客户的微分是一个非琐碎的任务,近期科学文学一直是一项非典型的遗漏。如果传统分割根据人口统计数据等粗略特征对客户进行分类,则微分内容描绘了个体之间的更细致的差异,提出了几个优点,包括改进金融服务中个性化的潜力。 AI和代表学习提供了解决微分段问题的独特机会。虽然在许多行业普遍存在,但金融等敏感产业的AI扩散已经取决于深层模型的解释性。我们之前通过从经常性神经网络(RNN)的状态空间提取了时间特征来解决了微分段问题。但是,由于RNN的固有不透明度,我们的解决方案缺乏解释。在本研究中,我们通过提取我们模型的符号解释并提供对我们的时间特征的解释来解决这个问题。为了解释,我们使用线性回归模型来重建具有高保真度的状态空间中的功能。我们表明我们的线性回归系数不仅了解了用于重新创建功能的规则,而且还学习了在原始数据中直接明显的关系。最后,我们提出了一种新的方法,通过使用逆回归和动态系统来定位和标记一组吸引子来解释状态空间的动态。
translated by 谷歌翻译
药物重新利用可以加速鉴定有效化合物用于针对SARS-COV-2的临床使用,并具有先前存在的临床安全数据和已建立的供应链的优势。 RNA病毒(例如SARS-COV-2)操纵细胞途径并诱导亚细胞结构的重组以支持其生命周期。可以使用生物成像技术来量化这些形态学的变化。在这项工作中,我们开发了DEEMD:使用深层神经网络模型在多个实例学习框架内的计算管道,以基于对公开可用RXRX19A数据集的形态分析来确定针对SARS-COV-2有效的推定治疗方法。该数据集由SARS-COV-2未感染的细胞和受感染细胞的荧光显微镜图像组成,有或没有药物治疗。 Deemd首先提取歧视性形态学特征,以产生来自未感染和感染细胞的细胞形态特征。然后在统计模型中使用这些形态学特征,以根据与未感染细胞的相似性估算受感染细胞的应用治疗疗效。 DEEMD能够通过弱监督定位受感染的细胞,而无需任何昂贵的像素级注释。 DEEMD确定已知的SARS-COV-2抑制剂,例如Remdesivir和Aloxistatin,支持我们方法的有效性。可以在其他新兴病毒和数据集上探索DEEMD,以便将来快速识别候选抗病毒药治疗}。我们的实施可在线网络https://www.github.com/sadegh-saberian/deemd
translated by 谷歌翻译
Amoebot模型将主动的可编程物质抽象为简单的计算元素的集合,称为Amoebot,它们在本地交互以集体完成协调和运动任务。自2014年SPAA推出以来,越来越多的文献已经改编了其对各种问题的假设。但是,如果没有标准化的假设层次结构,则很难对Amoebot模型下的结果进行精确的系统比较。我们提出了规范的Amoebot模型,该模型是一个更新的形式化,可区分核心模型特征和假设变体系列。规范Amoebot模型解决的关键改进是并发。现有的许多文献隐含地假设Amoebot动作是孤立且可靠的,将分析降低到一个顺序设置,其中最多一次是Amoebot活跃的。但是,实际可编程系统是并发的。 Canonical Amoebot模型将所有Amoebot通信形式化为消息传递,利用并发执行的对抗激活模型。在这种颗粒状的时间处理下,我们采用两种互补方法来并发算法设计。我们首先在任何并发执行下建立一组足够的条件,以实现算法正确性,将并发控制直接嵌入算法设计中。然后,我们提出了一个并发控制框架,该框架使用锁来转换在顺序设置中终止的Amoebot算法,并满足某些约定在并发设置中表现出等效行为的算法中的某些约定。作为案例研究,我们使用简单的六边形形成算法证明了这两种方法。共同的Amoebot模型以及这些并发算法设计的互补方法设计开放的新方向,用于分布式计算可编程问题。
translated by 谷歌翻译
Making histopathology image classifiers robust to a wide range of real-world variability is a challenging task. Here, we describe a candidate deep learning solution for the Mitosis Domain Generalization Challenge 2022 (MIDOG) to address the problem of generalization for mitosis detection in images of hematoxylin-eosin-stained histology slides under high variability (scanner, tissue type and species variability). Our approach consists in training a rotation-invariant deep learning model using aggressive data augmentation with a training set enriched with hard negative examples and automatically selected negative examples from the unlabeled part of the challenge dataset. To optimize the performance of our models, we investigated a hard negative mining regime search procedure that lead us to train our best model using a subset of image patches representing 19.6% of our training partition of the challenge dataset. Our candidate model ensemble achieved a F1-score of .697 on the final test set after automated evaluation on the challenge platform, achieving the third best overall score in the MIDOG 2022 Challenge.
translated by 谷歌翻译
Supervised Question Answering systems (QA systems) rely on domain-specific human-labeled data for training. Unsupervised QA systems generate their own question-answer training pairs, typically using secondary knowledge sources to achieve this outcome. Our approach (called PIE-QG) uses Open Information Extraction (OpenIE) to generate synthetic training questions from paraphrased passages and uses the question-answer pairs as training data for a language model for a state-of-the-art QA system based on BERT. Triples in the form of <subject, predicate, object> are extracted from each passage, and questions are formed with subjects (or objects) and predicates while objects (or subjects) are considered as answers. Experimenting on five extractive QA datasets demonstrates that our technique achieves on-par performance with existing state-of-the-art QA systems with the benefit of being trained on an order of magnitude fewer documents and without any recourse to external reference data sources.
translated by 谷歌翻译