Motion prediction is highly relevant to the perception of dynamic objects and static map elements in the scenarios of autonomous driving. In this work, we propose PIP, the first end-to-end Transformer-based framework which jointly and interactively performs online mapping, object detection and motion prediction. PIP leverages map queries, agent queries and mode queries to encode the instance-wise information of map elements, agents and motion intentions, respectively. Based on the unified query representation, a differentiable multi-task interaction scheme is proposed to exploit the correlation between perception and prediction. Even without human-annotated HD map or agent's historical tracking trajectory as guidance information, PIP realizes end-to-end multi-agent motion prediction and achieves better performance than tracking-based and HD-map-based methods. PIP provides comprehensive high-level information of the driving scene (vectorized static map and dynamic objects with motion information), and contributes to the downstream planning and control. Code and models will be released for facilitating further research.
translated by 谷歌翻译
我们提出MAPTR,这是一个结构化的端到端框架,用于有效的在线矢量化高清图构建。我们提出了一种基于统一的建模方法,即将MAP元素建模为具有一组等效排列的点集,从而避免了地图元素的定义歧义并简化学习。我们采用层次查询嵌入方案来灵活编码结构化的地图信息,并对地图元素学习执行层次结构匹配。 MAPTR在Nuscenes数据集上实现了现有的矢量化MAP构造方法的最佳性能和效率。尤其是,MAPTR-NANO以RTX 3090的实时推理速度($ 25.1 $ fps)运行,比现有的基于最新的摄像头方法快$ 8 \ times $ $,同时获得$ 3.3 $较高的地图。 Maptr-tiny在更快的速度的同时显着优于现有的最新多模式方法$ 13.5 $地图。定性结果表明,MAPTR在复杂和各种驾驶场景中保持稳定且强大的地图构造质量。可在\ url {https://github.com/hustvl/maptr}上获得丰富的演示,以证明在现实世界情景中的有效性。 MAPTR在自动驾驶中具有巨大的应用价值。代码将发布以促进进一步的研究和应用。
translated by 谷歌翻译
拓扑不平衡是由标记节点的不均匀拓扑位置引起的一个特异性不平衡问题,它大大损害了GNN的性能。什么拓扑不平衡意味着如何衡量其对图形学习的影响。在本文中,从全球视图中,我们对监督信息分布的全球视图提供了对拓扑 - 不平衡的新理解,从不足和过度划分的角度来看,这激发了两个定量指标作为测量。鉴于我们的分析,我们提出了一个新颖的位置感知的图形结构学习框架,该框架名为柔和,该框架直接优化了信息传播路径并解决了本质上解决拓扑 - 不平衡问题。我们的关键见解是增强同一类中节点的连接性,以获取更多的监督信息,从而减轻不足和过度的现象。具体而言,我们设计了一个基于锚的位置编码机制,该机制可以更好地结合相对拓扑位置并通过最大化标签影响来增强类内部电感偏置。我们进一步提出了作为边缘权重的阶级冲突度量,这有利于不同节点类别的分离。广泛的实验表明,在不同的数据注释方案中增强GNNS的功率方面,柔和的能力具有较高的潜力和适应性。
translated by 谷歌翻译
对话场景是语音处理技术最重要,最具挑战性的场景之一,因为对话中的人们以随意的方式相互反应。在对话中检测每个人的语音活动对于下游任务,例如自然语言处理,机器翻译等。人们指的是“何时说话”作为说话者诊断(SD)的检测技术。传统上,诊断错误率(DER)长期以来一直用作SD系统的标准评估度量。但是,der没有给简短的对话短语提供足够的重视,这在语义层面上很重要。此外,在语音社区中,仍然无法使用精心准确的手动测试数据集,适合评估对话性SD技术。在本文中,我们设计和描述了对话式短语扬声器诊断(CSSD)任务,该任务包括培训和测试数据集,评估指标和基线。在数据集方面,尽管先前开源的180小时对话魔术Data-RAMC数据集,但我们还准备了一个20小时的对话演讲测试数据集,并精心验证了CSSD任务的时间戳注释。在度量方面,我们设计了新的对话der(CDER)评估度量,该评估度量计算出语音级别的SD准确性。在基线方面,我们采用了一种常用的方法:变异贝叶斯HMM X-vector系统,作为CSSD任务的基线。我们的评估指标可在https://github.com/speechclub/cder_metric上公开获得。
translated by 谷歌翻译
变异量子算法(VQA)在NISQ时代表现出巨大的潜力。在VQA的工作流程中,Ansatz的参数迭代更新以近似所需的量子状态。我们已经看到了各种努力,以较少的大门起草更好的安萨兹。在量子计算机中,栅极Ansatz最终将转换为控制信号,例如TransMons上的微波脉冲。并且对照脉冲需要精心校准,以最大程度地减少误差(例如过度旋转和旋转)。在VQA的情况下,此过程将引入冗余,但是VQAS的变异性能自然可以通过更新幅度和频率参数来处理过度旋转和重组的问题。因此,我们提出了PAN,这是一种用于VQA的天然脉冲ANSATZ GENTARATOR框架。我们生成具有可训练参数用于振幅和频率的天然脉冲ansatz。在我们提出的锅中,我们正在调整参数脉冲,这些脉冲在NISQ计算机上得到了内在支持。考虑到本机 - 脉冲ANSATZ不符合参数迁移规则,我们需要部署非级别优化器。为了限制发送到优化器的参数数量,我们采用了一种生成本机 - 脉冲ANSATZ的渐进式方式。实验是在模拟器和量子设备上进行的,以验证我们的方法。当在NISQ机器上采用时,PAN获得的延迟平均提高了86%。 PAN在H2和HEH+上的VQE任务分别能够达到99.336%和96.482%的精度,即使NISQ机器中有很大的噪声。
translated by 谷歌翻译
胸部X射线(CXR)图像中的肺结节检测是肺癌的早期筛查。基于深度学习的计算机辅助诊断(CAD)系统可以支持放射线医生在CXR中进行结节筛选。但是,它需要具有高质量注释的大规模和多样化的医学数据,以训练这种强大而准确的CAD。为了减轻此类数据集的有限可用性,为了增加数据增强而提出了肺结核合成方法。然而,以前的方法缺乏产生结节的能力,这些结节与检测器所需的大小属性相关。为了解决这个问题,我们在本文中介绍了一种新颖的肺结综合框架,该框架分别将结节属性分为三个主要方面,包括形状,大小和纹理。基于GAN的形状生成器首先通过产生各种形状掩模来建模结节形状。然后,以下大小调制可以对像素级粒度中生成的结节形状的直径进行定量控制。一条粗到细门的卷积卷积纹理发生器最终合成了以调制形状掩模为条件的视觉上合理的结节纹理。此外,我们建议通过控制数据增强的分离结节属性来合成结节CXR图像,以便更好地补偿检测任务中容易错过的结节。我们的实验证明了所提出的肺结构合成框架的图像质量,多样性和可控性的增强。我们还验证了数据增强对大大改善结节检测性能的有效性。
translated by 谷歌翻译
在这项工作中,我们为基于视觉的不均衡的BEV表示学习提出了PolarBev。为了适应摄像机成像的预先处理效果,我们将BEV空间横向和辐射上栅格化,并引入极性嵌入分解,以模拟极性网格之间的关联。极性网格被重新排列到类似阵列的常规表示,以进行有效处理。此外,为了确定2到3D对应关系,我们根据假设平面迭代更新BEV表面,并采用基于高度的特征转换。PolarBev在单个2080TI GPU上保持实时推理速度,并且在BEV语义分割和BEV实例分割方面都优于其他方法。展示彻底消融以验证设计。该代码将在\ url {https://github.com/superz-liu/polarbev}上发布。
translated by 谷歌翻译
基于环绕视图摄像机系统的3D检测是自动驾驶中的一项关键技术。在这项工作中,我们提出了3D检测的极性参数化,该参数化重新定义了偏振系统中的位置参数化,速度分解,感知范围,标签分配和损失函数。极性参数化建立了图像模式与预测目标之间的明确关联,从而利用环绕视觉摄像机的视图对称性为感应偏置,以减轻优化和增强性能。基于极性参数化,我们提出了一个名为polardetr的环绕视图3D检测变压器。Polardetr在不同的主链配置上实现了有希望的性能速度权衡。此外,在提交时间(2022年3月4日)的3D检测和3D跟踪方面,Polardetr在Nuscenes基准的排行榜上排名第一。代码将以\ url {https://github.com/hustvl/polardetr}发布。
translated by 谷歌翻译
DETR方法中引入的查询机制正在改变对象检测的范例,最近有许多基于查询的方法获得了强对象检测性能。但是,当前基于查询的检测管道遇到了以下两个问题。首先,需要多阶段解码器来优化随机初始化的对象查询,从而产生较大的计算负担。其次,训练后的查询是固定的,导致不满意的概括能力。为了纠正上述问题,我们在较快的R-CNN框架中提出了通过查询生成网络预测的特征对象查询,并开发了一个功能性的查询R-CNN。可可数据集的广泛实验表明,我们的特征查询R-CNN获得了所有R-CNN探测器的最佳速度准确性权衡,包括最近的最新稀疏R-CNN检测器。该代码可在\ url {https://github.com/hustvl/featurized-queryrcnn}中获得。
translated by 谷歌翻译
从周围的视角摄像机中学习鸟类视图(BEV)表示对于自动驾驶非常重要。在这项工作中,我们提出了一种几何学引导的内核变压器(GKT),这是一种新颖的2到BEV表示的学习机制。 GKT利用几何先验来指导变压器专注于判别区域,并展开内核特征以生成BEV表示。对于快速推断,我们进一步引入了查找表(LUT)索引方法,以消除在运行时消除相机的校准参数。 GKT在2080TI GPU上的3090 GPU / $ 45.6 $ fps上的价格为$ 72.3 $ fps,并且对摄像机偏差和预定义的BEV高度非常强大。 GKT在Nuscenes Val设置上实现了最新的实时细分结果,即38.0 miou(1亿$ \ times以1亿美元的感知范围,分辨率为0.50万)。鉴于效率,有效性和鲁棒性,GKT在自动驾驶场景中具有巨大的实践价值,尤其是对于实时运行系统。代码和模型将在\ url {https://github.com/hustvl/gkt}上提供。
translated by 谷歌翻译