Computational notebooks, such as Jupyter notebooks, are interactive computing environments that are ubiquitous among data scientists to perform data wrangling and analytic tasks. To measure the performance of AI pair programmers that automatically synthesize programs for those tasks given natural language (NL) intents from users, we build ARCADE, a benchmark of 1082 code generation problems using the pandas data analysis framework in data science notebooks. ARCADE features multiple rounds of NL-to-code problems from the same notebook. It requires a model to understand rich multi-modal contexts, such as existing notebook cells and their execution states as well as previous turns of interaction. To establish a strong baseline on this challenging task, we develop PaChiNCo, a 62B code language model (LM) for Python computational notebooks, which significantly outperforms public code LMs. Finally, we explore few-shot prompting strategies to elicit better code with step-by-step decomposition and NL explanation, showing the potential to improve the diversity and explainability of model predictions.
translated by 谷歌翻译
程序的图表通常是用于代码研究的机器学习的核心要素。我们介绍了一个开源Python库Python_graphs,该图片将静态分析应用于构建适合培训机器学习模型的Python程序的图表。我们的库承认控制流图,数据流图和复合``程序图''的构建,这些图形结合了控制流,数据流,句法和词汇信息。我们介绍了图书馆的功能和局限性,进行案例研究,将图书馆应用于数百万竞争性的编程提交,并展示图书馆的机器学习研究实用程序。
translated by 谷歌翻译
促使模型表现出令人印象深刻的几次学习能力。在测试时间与单个模型或多个模型的组成一起重复相互作用,进一步扩展了功能。这些组成是概率模型,可以用具有随机变量的图形模型的语言表示,其值是复杂的数据类型,例如字符串。具有控制流和动态结构的情况需要概率编程的技术,这些技术允许以统一语言实施不同的模型结构和推理策略。我们从这个角度正式化了几种现有技术,包括刮擦板 /思想链,验证者,星星,选择 - 推动和工具使用。我们将结果程序称为语言模型级联。
translated by 谷歌翻译
数据清洁通常包括离群检测和数据修复。系统错误是由于数据反复发生的几乎确定性转换而导致的,例如特定的图像像素设置为默认值或水印。因此,容量足够的模型很容易地超出这些错误,从而使检测和修复变得困难。作为系统的离群值是干净实例和系统误差模式的模式的组合,我们的主要见解是,嵌入者可以通过模型中的较小的表示形式(子空间)来建模,而不是离群值。通过利用这一点,我们提出了清洁子空间变量自动编码器(CLSVAE),这是一种新型的半监督模型,用于检测和自动修复系统误差。主要思想是分别分别分区潜在的空间和模型模型。与以前的相关模型相比,CLSVAE的有效数据少得多,通常不到2%的数据。我们在具有不同级别的损坏和标记的集合大小的方案中使用三个图像数据集提供实验,与相关基线相比。 CLSVAE提供了无人干预的优质维修,例如与最接近的基线相比,只有标记数据的0.25%的相对误差下降了58%。
translated by 谷歌翻译
大型语言模型已被证明可以使用少量学习来实现各种自然语言任务的出色表现,这大大减少了将模型调整到特定应用程序所需的特定任务培训示例的数量。为了进一步了解量表对少量学习的影响,我们培训了一个5400亿个参数,密集激活的变压器语言模型,我们称之为“途径”语言模型棕榈。我们使用Pathways在6144 TPU V4芯片上训练了Palm,这是一种新的ML系统,可在多个TPU POD上进行高效的训练。我们通过在数百种语言理解和产生基准的基准方面实现最先进的学习结果来证明扩展的持续好处。在这些任务中,Palm 540B实现了突破性的表现,在一系列多步推理任务上表现出色,超过了最新的最新表现,并且在最近发布的Big Benchmark上表现优于平均人类表现。大量的大型基础任务显示出与模型量表的不连续改进,这意味着当我们扩展到最大模型时,性能急剧增加。 Palm在多语言任务和源代码生成方面也具有很强的功能,我们在各种基准测试中证明了这一点。我们还提供了有关偏见和毒性的全面分析,并研究了训练数据记忆的程度,相对于模型量表。最后,我们讨论与大语言模型有关的道德考虑,并讨论潜在的缓解策略。
translated by 谷歌翻译
大型预先训练的语言模型可以在可以在一个可以“单通”中的任务上进行非常好,例如生成现实文本或合成计算机程序。但是,他们与需要无限的多步计算的任务斗争,例如添加整数或执行程序。令人惊讶的是,我们发现这些相同的模型能够执行复杂的多步计算 - 即使在少量射门中,当被要求执行操作“一步一步”时,表示中间计算的结果。特别是,我们通过询问它们将中间计算步骤发出到“ScratchPad”来执行变压器来执行多步计算。在一系列越来越复杂的任务范围内,从加入任意程序的执行范围,我们表明Scratchpads显着提高了语言模型执行多步计算的能力。
translated by 谷歌翻译
Coronary Computed Tomography Angiography (CCTA) provides information on the presence, extent, and severity of obstructive coronary artery disease. Large-scale clinical studies analyzing CCTA-derived metrics typically require ground-truth validation in the form of high-fidelity 3D intravascular imaging. However, manual rigid alignment of intravascular images to corresponding CCTA images is both time consuming and user-dependent. Moreover, intravascular modalities suffer from several non-rigid motion-induced distortions arising from distortions in the imaging catheter path. To address these issues, we here present a semi-automatic segmentation-based framework for both rigid and non-rigid matching of intravascular images to CCTA images. We formulate the problem in terms of finding the optimal \emph{virtual catheter path} that samples the CCTA data to recapitulate the coronary artery morphology found in the intravascular image. We validate our co-registration framework on a cohort of $n=40$ patients using bifurcation landmarks as ground truth for longitudinal and rotational registration. Our results indicate that our non-rigid registration significantly outperforms other co-registration approaches for luminal bifurcation alignment in both longitudinal (mean mismatch: 3.3 frames) and rotational directions (mean mismatch: 28.6 degrees). By providing a differentiable framework for automatic multi-modal intravascular data fusion, our developed co-registration modules significantly reduces the manual effort required to conduct large-scale multi-modal clinical studies while also providing a solid foundation for the development of machine learning-based co-registration approaches.
translated by 谷歌翻译
Regularising the parameter matrices of neural networks is ubiquitous in training deep models. Typical regularisation approaches suggest initialising weights using small random values, and to penalise weights to promote sparsity. However, these widely used techniques may be less effective in certain scenarios. Here, we study the Koopman autoencoder model which includes an encoder, a Koopman operator layer, and a decoder. These models have been designed and dedicated to tackle physics-related problems with interpretable dynamics and an ability to incorporate physics-related constraints. However, the majority of existing work employs standard regularisation practices. In our work, we take a step toward augmenting Koopman autoencoders with initialisation and penalty schemes tailored for physics-related settings. Specifically, we propose the "eigeninit" initialisation scheme that samples initial Koopman operators from specific eigenvalue distributions. In addition, we suggest the "eigenloss" penalty scheme that penalises the eigenvalues of the Koopman operator during training. We demonstrate the utility of these schemes on two synthetic data sets: a driven pendulum and flow past a cylinder; and two real-world problems: ocean surface temperatures and cyclone wind fields. We find on these datasets that eigenloss and eigeninit improves the convergence rate by up to a factor of 5, and that they reduce the cumulative long-term prediction error by up to a factor of 3. Such a finding points to the utility of incorporating similar schemes as an inductive bias in other physics-related deep learning approaches.
translated by 谷歌翻译
While recent advancements in artificial intelligence (AI) language models demonstrate cutting-edge performance when working with English texts, equivalent models do not exist in other languages or do not reach the same performance level. This undesired effect of AI advancements increases the gap between access to new technology from different populations across the world. This unsought bias mainly discriminates against individuals whose English skills are less developed, e.g., non-English speakers children. Following significant advancements in AI research in recent years, OpenAI has recently presented DALL-E: a powerful tool for creating images based on English text prompts. While DALL-E is a promising tool for many applications, its decreased performance when given input in a different language, limits its audience and deepens the gap between populations. An additional limitation of the current DALL-E model is that it only allows for the creation of a few images in response to a given input prompt, rather than a series of consecutive coherent frames that tell a story or describe a process that changes over time. Here, we present an easy-to-use automatic DALL-E storytelling framework that leverages the existing DALL-E model to enable fast and coherent visualizations of non-English songs and stories, pushing the limit of the one-step-at-a-time option DALL-E currently offers. We show that our framework is able to effectively visualize stories from non-English texts and portray the changes in the plot over time. It is also able to create a narrative and maintain interpretable changes in the description across frames. Additionally, our framework offers users the ability to specify constraints on the story elements, such as a specific location or context, and to maintain a consistent style throughout the visualization.
translated by 谷歌翻译
This paper proposes a perception and path planning pipeline for autonomous racing in an unknown bounded course. The pipeline was initially created for the 2021 evGrandPrix autonomous division and was further improved for the 2022 event, both of which resulting in first place finishes. Using a simple LiDAR-based perception pipeline feeding into an occupancy grid based expansion algorithm, we determine a goal point to drive. This pipeline successfully achieved reliable and consistent laps in addition with occupancy grid algorithm to know the ways around a cone-defined track with an averaging speeds of 6.85 m/s over a distance 434.2 meters for a total lap time of 63.4 seconds.
translated by 谷歌翻译