The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Mobile stereo-matching systems have become an important part of many applications, such as automated-driving vehicles and autonomous robots. Accurate stereo-matching methods usually lead to high computational complexity; however, mobile platforms have only limited hardware resources to keep their power consumption low; this makes it difficult to maintain both an acceptable processing speed and accuracy on mobile platforms. To resolve this trade-off, we herein propose a novel acceleration approach for the well-known zero-means normalized cross correlation (ZNCC) matching cost calculation algorithm on a Jetson Tx2 embedded GPU. In our method for accelerating ZNCC, target images are scanned in a zigzag fashion to efficiently reuse one pixel's computation for its neighboring pixels; this reduces the amount of data transmission and increases the utilization of on-chip registers, thus increasing the processing speed. As a result, our method is 2X faster than the traditional image scanning method, and 26% faster than the latest NCC method. By combining this technique with the domain transformation (DT) algorithm, our system show real-time processing speed of 32 fps, on a Jetson Tx2 GPU for 1,280x384 pixel images with a maximum disparity of 128. Additionally, the evaluation results on the KITTI 2015 benchmark show that our combined system is more accurate than the same algorithm combined with census by 7.26%, while maintaining almost the same processing speed.
translated by 谷歌翻译
Transformer-based language models have become the standard approach to solving natural language processing tasks. However, industry adoption usually requires the maximum throughput to comply with certain latency constraints that prevents Transformer models from being used in production. To address this gap, model compression techniques such as quantization and pruning may be used to improve inference efficiency. However, these compression techniques require specialized software to apply and deploy at scale. In this work, we propose a new pipeline for creating and running Fast Transformer models on CPUs, utilizing hardware-aware pruning, knowledge distillation, quantization, and our own Transformer inference runtime engine with optimized kernels for sparse and quantized operators. We demonstrate the efficiency of our pipeline by creating a Fast DistilBERT model showing minimal accuracy loss on the question-answering SQuADv1.1 benchmark, and throughput results under typical production constraints and environments. Our results outperform existing state-of-the-art Neural Magic's DeepSparse runtime performance by up to 50% and up to 4.1x performance speedup over ONNX Runtime. Source code is publicly available at https://github.com/intel/intel-extension-for-transformers.
translated by 谷歌翻译
近年来,在自学学习(SSL)方面取得了重大成功,这有助于各种下游任务。但是,攻击者可能会窃取此类SSL模型并将其商业化以获利,这对于保护其知识产权(IP)至关重要。大多数现有的IP保护解决方案都是为监督学习模型而设计的,不能直接使用,因为它们要求模型的下游任务和目标标签在水印嵌入过程中已知并获得,这在SSL的域中并非总是可以的。为了解决此类问题,尤其是在水印嵌入过程中下游任务多样化且未知时,我们提出了一种新型的黑盒水印解决方案,名为SSL-WM,以保护SSL模型的所有权。 SSL-WM将水印编码器的水印输入映射到不变的表示空间中,该空间会导致任何下游分类器产生预期的行为,从而允许检测到嵌入式水印。我们使用不同的SSL模型(包括基于对比度和基于生成的生成型)来评估许多任务,例如计算机视觉(CV)和自然语言处理(NLP)等许多任务。实验结果表明,SSL-WM可以有效地验证各种下游任务中被盗SSL模型的所有权。此外,SSL-WM对模型进行微调和修剪攻击非常强大。最后,SSL-WM还可以从评估的水印检测方法中逃避检测,从而证明了其在保护SSL模型IP时的有希望的应用。
translated by 谷歌翻译
在大多数现实世界中的推荐方案中,多种行为(例如,单击,添加到购物车,采购等)的多类型,这对于学习用户的多方面偏好是有益的。由于多种类型的行为明确表现出依赖性,因此有效地对复杂行为依赖性建模对于多行为预测至关重要。最先进的多行为模型以所有历史互动为输入都没有区别地学习行为依赖性。但是,不同的行为可能反映了用户偏好的不同方面,这意味着某些无关的互动可能会像预测目标行为的声音一样发挥作用。为了解决上述局限性,我们向多行为建议介绍了多功能学习。更具体地说,我们提出了一种新颖的粗到五个知识增强的多功能学习(CKML)框架,以学习不同行为的共享和特定于行为的利益。 CKML引入了两个高级模块,即粗粒兴趣提取(CIE)和细粒度的行为相关性(FBC),它们共同起作用以捕获细粒度的行为依赖性。 CIE使用知识感知信息来提取每个兴趣的初始表示。 FBC结合了动态路由方案,以在兴趣之间进一步分配每个行为。此外,我们使用自我注意机制在兴趣水平上将不同的行为信息相关联。三个现实世界数据集的经验结果验证了我们模型在利用多行为数据方面的有效性和效率。进一步的实验证明了每个模块的有效性以及多行为数据共享和特定建模范式的鲁棒性和优越性。
translated by 谷歌翻译
在计算机视觉中,微调是利用预训练的视觉模型来执行下游任务的事实上的方法。但是,由于采用参数效率低下的全局更新并严重依赖于高质量的下游数据,因此在实践中部署它是非常具有挑战性的。最近,基于及时的学习添加了与任务相关的提示,以使下游任务适应预训练的模型,从而极大地提高了许多自然语言下游任务的性能。在这项工作中,我们扩展了这种显着的转移能力,从迅速的愿景模型中受益,以替代微调。为此,我们提出了参数有效的及时调整(亲调整),以使冷冻视觉模型适应各种下游视觉任务。实行调整的关键是基于及时的调整,即学习特定于任务的视觉提示,以使用预先训练的模型冷冻的下游输入图像。通过仅培训一些其他参数,它可以在基于CNN和基于变压器的各种架构上工作。广泛的实验证据表明,在广泛的视觉任务和场景中,主张表现优于微调,包括图像分类(通用对象,类失衡,图像腐败,对抗性稳定性和分布范围内的概括)和密集的预测任务例如对象检测和语义分割。
translated by 谷歌翻译
超声检查广泛用于甲状腺结节(良性/恶性)的临床诊断。但是,准确性在很大程度上取决于放射科医生的经验。尽管已经研究了甲状腺结节识别的深度学习技术。当前的解决方案主要基于静态超声图像,其时间信息有限,并且与临床诊断不一致。本文提出了一种通过详尽的超声视频和钥匙框架进行详尽的探索来自动识别甲状腺结节的新方法。我们首先提出一个检测 - 定位框架,以自动识别每个超声视频中典型结节的临床密钥框架。根据本地化的键框架,我们为甲状腺结节识别开发了一个钥匙框引导的视频分类模型。此外,我们引入了运动注意模块,以帮助网络关注超声视频中的重要帧,这与临床诊断一致。拟议的甲状腺结节识别框架已在临床收集的超声视频上进行了验证,与其他最先进的方法相比,表现出卓越的性能。
translated by 谷歌翻译
关节2D心脏分割和3D体积重建是建立统计心脏解剖模型的基础,并了解运动模式的功能机制。但是,由于CINE MR和高主体间方差的平面分辨率低,精确分割心脏图像并重建3D体积是具有挑战性的。在这项研究中,我们提出了一个基于潜在空间的端到端框架DeepRecon,该框架会产生多个临床上基本的结果,包括准确的图像分割,合成高分辨率3D图像和3D重建体积。我们的方法确定了Cine图像的最佳潜在表示,其中包含心脏结构的准确语义信息。特别是,我们的模型共同生成具有准确的语义信息的合成图像,并使用最佳潜在表示对心脏结构进行分割。我们进一步探索了3D形状重建和4D运动模式通过不同的潜在空间操纵策略进行适应的下游应用。同时生成的高分辨率图像具有评估心脏形状和运动的高可解释价值。实验性结果证明了我们的有效性在多个方面的方法,包括2D分割,3D重建,下游4D运动模式适应性。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
随着事物(AIOT)的发展,在我们的日常工作和生活中产生了大量的视觉数据,例如图像和视频。这些视觉数据不仅用于人类观察或理解,而且用于机器分析或决策,例如智能监控,自动化车辆和许多其他智能城市应用。为此,在这项工作中提出了一种用于人机和机器使用的新图像编解码器范例。首先,利用神经网络提取高级实例分割图和低级信号特征。然后,实例分割图还被表示为具有所提出的16位灰度表示的简档。之后,两个16位灰度曲线和信号特征都以无损编解码器编码。同时,设计和培训图像预测器以实现具有16位灰度曲线简曲和信号特征的一般质量图像重建。最后,使用用于高质量图像重建的有损编解码器来压缩原始图像和预测的剩余地图。通过这种设计,一方面,我们可以实现可扩展的图像压缩,以满足不同人类消费的要求;另一方面,我们可以通过解码的16位灰度分布配置,例如对象分类,检测和分割,直接在解码器侧直接实现多个机器视觉任务。实验结果表明,该建议的编解码器在PSNR和MS-SSIM方面实现了基于大多数基于学习的编解码器,并且优于传统编解码器(例如,BPG和JPEG2000)以进行图像重建。同时,它在对象检测和分割的映射方面优于现有的编解码器。
translated by 谷歌翻译