Likelihood-based deep generative models have recently been shown to exhibit pathological behaviour under the manifold hypothesis as a consequence of using high-dimensional densities to model data with low-dimensional structure. In this paper we propose two methodologies aimed at addressing this problem. Both are based on adding Gaussian noise to the data to remove the dimensionality mismatch during training, and both provide a denoising mechanism whose goal is to sample from the model as though no noise had been added to the data. Our first approach is based on Tweedie's formula, and the second on models which take the variance of added noise as a conditional input. We show that surprisingly, while well motivated, these approaches only sporadically improve performance over not adding noise, and that other methods of addressing the dimensionality mismatch are more empirically adequate.
translated by 谷歌翻译
深度学习在学习高维数据的低维表示方面取得了巨大的成功。如果在感兴趣的数据中没有隐藏的低维结构,那么这一成功将是不可能的。这种存在是由歧管假设提出的,该假设指出数据在于固有维度低的未知流形。在本文中,我们认为该假设无法正确捕获数据中通常存在的低维结构。假设数据在于单个流形意味着整个数据空间的内在维度相同,并且不允许该空间的子区域具有不同数量的变异因素。为了解决这一缺陷,我们提出了多种假设的结合,该假设适应了非恒定固有维度的存在。我们从经验上验证了在常用图像数据集上的这一假设,发现确实应该允许内在维度变化。我们还表明,具有较高内在维度的类更难分类,以及如何使用这种见解来提高分类精度。然后,我们将注意力转移到该假设的影响下,在深层生成模型(DGM)的背景下。当前的大多数DGM都难以建模具有几个连接组件和/或不同固有维度的数据集建模。为了解决这些缺点,我们提出了群集的DGM,首先将数据聚集,然后在每个群集上训练DGM。我们表明,聚类的DGM可以模拟具有不同固有维度的多个连接组件,并在没有增加计算要求的情况下经验优于其非簇的非群体。
translated by 谷歌翻译
在$ \ mathbb {r}^n $中观察到的自然数据通常被限制为$ m $ dimensional歧管$ \ mathcal {m} $,其中$ m <n $。当前的生成模型通过通过神经网络$ f_ \ theta映射$ m $二维潜在变量来表示此流形:\ mathbb {r}^m \ to \ mathbb {r}^n $。我们称之为Pushforward模型的此类过程产生了一个直接的限制:通常不能以单个参数化表示歧管,这意味着尝试这样做的方法将导致计算不稳定性或无法在歧管内学习概率密度。为了解决这个问题,我们建议将$ \ mathcal {m} $建模为神经隐式歧管:神经网络的零零。为了了解$ \ Mathcal {M} $中的数据分布,我们引入了受限的基于能量的模型,该模型使用Langevin Dynamics的约束变体来训练和示例在学习的歧管中。可以用歧管的算术来操纵所得模型,该模型使从业者可以采用工会和模型歧管的交叉点。在有关合成和自然数据的实验中,我们表明,受约束的EBM可以比推送模型更准确地学习具有复杂拓扑的歧管支配分布。
translated by 谷歌翻译
基于似然或显式的深层生成模型使用神经网络来构建灵活的高维密度。该公式直接与歧管假设相矛盾,该假设指出,观察到的数据位于嵌入高维环境空间中的低维歧管上。在本文中,我们研究了在这种维度不匹配的情况下,最大可能的训练的病理。我们正式证明,在学习歧管本身而不是分布的情况下,可以实现堕落的优点,而我们称之为多种歧视的现象过于拟合。我们提出了一类两步程序,该过程包括降低降低步骤,然后进行最大样子密度估计,并证明它们在非参数方面恢复了数据生成分布,从而避免了多种歧视。我们还表明,这些过程能够对隐式模型(例如生成对抗网络)学到的流形进行密度估计,从而解决了这些模型的主要缺点。最近提出的几种方法是我们两步程序的实例。因此,我们统一,扩展和理论上证明了一大批模型。
translated by 谷歌翻译
标准化流是生成模型,其通过从简单的基本分布到复杂的目标分布的可逆性转换提供易于变换的工艺模型。然而,该技术不能直接模拟支持未知的低维歧管的数据,在诸如图像数据之类的现实世界域中的公共发生。最近的补救措施的尝试引入了击败归一化流量的中央好处的几何并发症:精确密度估计。我们通过保形嵌入流量来恢复这种福利,这是一种设计流动与贸易密度的流动的流动的框架。我们争辩说,使用培训保育嵌入的标准流量是模型支持数据的最自然的方式。为此,我们提出了一系列保形构建块,并在具有合成和实际数据的实验中应用它们,以证明流动可以在不牺牲贸易可能性的情况下模拟歧管支持的分布。
translated by 谷歌翻译
th骨海星(COTS)爆发是大屏障礁(GBR)珊瑚损失的主要原因,并且正在进行实质性的监视和控制计划,以将COTS人群管理至生态可持续的水平。在本文中,我们在边缘设备上介绍了基于水下的水下数据收集和策展系统,以进行COTS监视。特别是,我们利用了基于深度学习的对象检测技术的功能,并提出了一种资源有效的COTS检测器,该检测器在边缘设备上执行检测推断,以帮助海上专家在数据收集阶段进行COTS识别。初步结果表明,可以将改善计算效率的几种策略(例如,批处理处理,帧跳过,模型输入大小)组合在一起,以在Edge硬件上运行拟议的检测模型,资源消耗较低,信息损失较低。
translated by 谷歌翻译
荆棘冠的海星(婴儿床)爆发是珊瑚损失的主要原因是巨大的障碍礁(GBR),并且正在进行大量监测和控制计划,以试图管理生态可持续水平的COTS群体。我们释放了GBR上的COTS爆发区域的大规模注释的水下图像数据集,以鼓励机器学习和AI驱动技术的研究,以改善珊瑚礁秤上的COTS群体的检测,监测和管理。该数据集发布并托管在一次竞争中,挑战国际机器学习界,并从这些水下图像中的COTS检测的任务挑战。
translated by 谷歌翻译
凭借越来越多的计算建模效率,用于管理和保护大障碍礁的计算建模效率,我们通过重新修复包含APSIM模型的输出的现有大型数据集来对APSIM模型进行机会模型模拟使用深神经网络的使用初探运行。数据集未专门针对模型仿真任务量身定制。我们采用了两个神经网络架构进行了仿真任务:密集连接的前馈神经网络(FFNN),以及进料到FFNN(GRU-FFNN)的门控复发单元,一种经常性神经网络。有试验架构的各种配置。最小相关统计用于识别可以聚合以形成模型仿真的训练集的APSIM场景的集群。我们专注于模拟APSIM模型的4个重要产出:径流,土壤,DINRUNOFF,NLEACHED。具有三个隐藏图层的GRU-FFNN架构和每层128个单位提供良好的径流和DINRUNOFF仿真。但是,在广泛的考虑架构下,肮脏和Nlo张化的仿真相对较差;仿真器未能在这两个输出的较高值下捕获可变性。虽然来自过去建模活动的机会主义数据提供了一个大型和有用的数据集,用于探索APSIM仿真,但它可能无法足够丰富,以便成功地学习更复杂的模型动态。可能需要计算机实验设计来生成更具信息性的数据以模拟所有输出变量的感兴趣。我们还建议使用合成气象设置,以允许模型进入各种输入。这些不需要都代表正常条件,但可以提供更密集的,更多的信息数据集,可以学习输入和输出之间的复杂关系。
translated by 谷歌翻译
We study the problem of planning under model uncertainty in an online meta-reinforcement learning (RL) setting where an agent is presented with a sequence of related tasks with limited interactions per task. The agent can use its experience in each task and across tasks to estimate both the transition model and the distribution over tasks. We propose an algorithm to meta-learn the underlying structure across tasks, utilize it to plan in each task, and upper-bound the regret of the planning loss. Our bound suggests that the average regret over tasks decreases as the number of tasks increases and as the tasks are more similar. In the classical single-task setting, it is known that the planning horizon should depend on the estimated model's accuracy, that is, on the number of samples within task. We generalize this finding to meta-RL and study this dependence of planning horizons on the number of tasks. Based on our theoretical findings, we derive heuristics for selecting slowly increasing discount factors, and we validate its significance empirically.
translated by 谷歌翻译
Participants in political discourse employ rhetorical strategies -- such as hedging, attributions, or denials -- to display varying degrees of belief commitments to claims proposed by themselves or others. Traditionally, political scientists have studied these epistemic phenomena through labor-intensive manual content analysis. We propose to help automate such work through epistemic stance prediction, drawn from research in computational semantics, to distinguish at the clausal level what is asserted, denied, or only ambivalently suggested by the author or other mentioned entities (belief holders). We first develop a simple RoBERTa-based model for multi-source stance predictions that outperforms more complex state-of-the-art modeling. Then we demonstrate its novel application to political science by conducting a large-scale analysis of the Mass Market Manifestos corpus of U.S. political opinion books, where we characterize trends in cited belief holders -- respected allies and opposed bogeymen -- across U.S. political ideologies.
translated by 谷歌翻译