在存在未衡量的混杂因素的情况下,我们解决了数据融合的治疗效应估计问题,即在不同的治疗分配机制下收集的多个数据集。例如,营销人员可以在不同时间/地点为相同产品分配不同的广告策略。为了处理由未衡量的混杂因素和数据融合引起的偏见,我们建议将观察数据分为多组(每个组具有独立治疗分配机制),然后将组指标显式地模拟为潜在的组仪器变量(LATGIV),将其模拟为实施基于IV的回归。在本文中,我们概念化了这种思想,并开发了一个统一的框架,以(1)估计跨群体观察到的变量的分布差异; (2)对不同治疗分配机制的LATGIV模型; (3)插入latgivs以估计治疗响应函数。经验结果证明了与最新方法相比,LATGIV的优势。
translated by 谷歌翻译
随着机器学习工具的进展,不可避免的问题出现:机器学习如何帮助我们编写更好的代码?随着GPT-3和BERT等模型在自然语言处理中取得的重大进展,开始探索自然语言处理技术在代码中的应用。大多数研究都集中在自动程序维修(APR)上,尽管合成或高度过滤的数据集的结果是有希望的,但由于错误本地化不足,因此很难在现实世界中使用此类模型。我们提出了Bigissue:现实错误本地化的基准。基准的目标是两倍。我们提供(1)具有多种真实和合成的Java错误的一般基准,以及(2)通过关注整个存储库环境来提高模型的错误本地化功能的动机。随着Bigissue的引入,我们希望在错误本地化方面提高最新技术,从而提高APR性能并提高其对现代发展周期的适用性。
translated by 谷歌翻译
我们利用离线增强学习(RL)模型在现实世界中有预算限制的情况下进行连续的目标促销。在我们的应用程序中,移动应用程序旨在通过向客户发送现金奖金并在每个时间段内控制此类现金奖金的成本来促进客户保留。为了实现多任务目标,我们提出了预算限制的加强学习,以进行顺序促销(BCRLSP)框架,以确定要发送给用户的现金奖金的价值。我们首先找出目标策略和相关的Q值,这些Q值是使用RL模型最大化用户保留率的。然后添加线性编程(LP)模型以满足促销成本的限制。我们通过最大化从RL模型中汲取的动作的Q值来解决LP问题。在部署期间,我们将离线RL模型与LP模型相结合,以在预算约束下生成强大的策略。使用在线和离线实验,我们通过证明BCRLSP达到的长期客户保留率和比各种基线更低的成本来证明我们方法的功效。利用近乎实时的成本控制方法,提出的框架可以轻松地使用嘈杂的行为政策和/或满足灵活的预算约束。
translated by 谷歌翻译
通过仅使用训练有素的分类器,模型内(MI)攻击可以恢复用于训练分类器的数据,从而导致培训数据的隐私泄漏。为了防止MI攻击,先前的工作利用单方面依赖优化策略,即,在培训分类器期间,最大程度地减少了输入(即功能)和输出(即标签)之间的依赖关系。但是,这样的最小化过程与最小化监督损失相冲突,该损失旨在最大程度地提高输入和输出之间的依赖关系,从而在模型鲁棒性针对MI攻击和模型实用程序上对分类任务进行明确的权衡。在本文中,我们旨在最大程度地减少潜在表示和输入之间的依赖性,同时最大化潜在表示和输出之间的依赖关系,称为双边依赖性优化(BIDO)策略。特别是,除了对深神经网络的常用损失(例如,跨渗透性)外,我们还将依赖性约束用作普遍适用的正常化程序,可以根据不同的任务将其实例化使用适当的依赖标准。为了验证我们策略的功效,我们通过使用两种不同的依赖性度量提出了两种BIDO的实施:具有约束协方差的Bido(Bido-Coco)(Bido-Coco)和Bido具有Hilbert-Schmidt独立标准(Bido-HSIC)。实验表明,比多(Bido防御MI攻击的道路。
translated by 谷歌翻译
最近,越来越多的努力用于学习符号知识库(KB)的持续表示。但是,这些方法要么仅嵌入数据级知识(ABOX),要么在处理概念级知识(Tbox)时受到固有的局限性,即它们不能忠实地对KBS中存在的逻辑结构进行建模。我们提出了Boxel,这是一种几何KB嵌入方法,可以更好地捕获描述逻辑EL ++中的逻辑结构(即Abox和Tbox Axioms)。 Boxel模型在Kb中作为轴平行框,适用于建模概念交叉点,作为点内部的实体以及概念/实体之间的关系作为仿射转换。我们展示了Boxel的理论保证(声音),以保存逻辑结构。也就是说,有损耗0的框嵌入模型是KB​​的(逻辑)模型。实验结果(合理)补充推理和用于蛋白质 - 蛋白质预测的现实世界应用的结果表明,Boxel的表现优于传统知识图嵌入方法以及最先进的EL ++嵌入方法。
translated by 谷歌翻译
While today's video recognition systems parse snapshots or short clips accurately, they cannot connect the dots and reason across a longer range of time yet. Most existing video architectures can only process <5 seconds of a video without hitting the computation or memory bottlenecks. In this paper, we propose a new strategy to overcome this challenge. Instead of trying to process more frames at once like most existing methods, we propose to process videos in an online fashion and cache "memory" at each iteration. Through the memory, the model can reference prior context for long-term modeling, with only a marginal cost. Based on this idea, we build MeMViT, a Memory-augmented Multiscale Vision Transformer, that has a temporal support 30x longer than existing models with only 4.5% more compute; traditional methods need >3,000% more compute to do the same. On a wide range of settings, the increased temporal support enabled by MeMViT brings large gains in recognition accuracy consistently. MeMViT obtains state-of-the-art results on the AVA, EPIC-Kitchens-100 action classification, and action anticipation datasets. Code and models are available at https://github.com/facebookresearch/memvit.
translated by 谷歌翻译
在本文中,我们将多尺度视觉变压器(MVIT)作为图像和视频分类的统一架构,以及对象检测。我们提出了一种改进的MVIT版本,它包含分解的相对位置嵌入和残余汇集连接。我们以五种尺寸实例化此架构,并评估Imagenet分类,COCO检测和动力学视频识别,在此优先效果。我们进一步比较了MVITS的汇集注意力来窗口注意力机制,其中它在准确性/计算中优于后者。如果没有钟声,MVIT在3个域中具有最先进的性能:ImageNet分类的准确性为88.8%,Coco对象检测的56.1盒AP和动力学-400视频分类的86.1%。代码和模型将公开可用。
translated by 谷歌翻译
我们介绍了一个开源深学习库的Pytorchvideo,为各种视频理解任务提供了丰富的模块化,高效,可重复的组件,包括分类,检测,自我监督学习和低级处理。该库涵盖了一系列视频理解工具,包括复制最先进的性能的多模式数据加载,转换和模型。Pytorchvideo进一步支持硬件加速,从而实现移动设备上的实时推断。图书馆基于Pytorch,可以由任何培训框架使用;例如,pytorchlightning,pyslowfast或优雅的愿景。pytorchvideo在https://pytorchvideo.org/提供
translated by 谷歌翻译
Graph convolutional networks (GCNs) are powerful frameworks for learning embeddings of graph-structured data. GCNs are traditionally studied through the lens of Euclidean geometry. Recent works find that non-Euclidean Riemannian manifolds provide specific inductive biases for embedding hierarchical or spherical data. However, they cannot align well with data of mixed graph topologies. We consider a larger class of pseudo-Riemannian manifolds that generalize hyperboloid and sphere. We develop new geodesic tools that allow for extending neural network operations into geodesically disconnected pseudo-Riemannian manifolds. As a consequence, we derive a pseudo-Riemannian GCN that models data in pseudo-Riemannian manifolds of constant nonzero curvature in the context of graph neural networks. Our method provides a geometric inductive bias that is sufficiently flexible to model mixed heterogeneous topologies like hierarchical graphs with cycles. We demonstrate the representational capabilities of this method by applying it to the tasks of graph reconstruction, node classification and link prediction on a series of standard graphs with mixed topologies. Empirical results demonstrate that our method outperforms Riemannian counterparts when embedding graphs of complex topologies.
translated by 谷歌翻译
We present Multiscale Vision Transformers (MViT) for video and image recognition, by connecting the seminal idea of multiscale feature hierarchies with transformer models. Multiscale Transformers have several channel-resolution scale stages. Starting from the input resolution and a small channel dimension, the stages hierarchically expand the channel capacity while reducing the spatial resolution. This creates a multiscale pyramid of features with early layers operating at high spatial resolution to model simple low-level visual information, and deeper layers at spatially coarse, but complex, high-dimensional features. We evaluate this fundamental architectural prior for modeling the dense nature of visual signals for a variety of video recognition tasks where it outperforms concurrent vision transformers that rely on large scale external pre-training and are 5-10× more costly in computation and parameters. We further remove the temporal dimension and apply our model for image classification where it outperforms prior work on vision transformers. Code is available at: https: //github.com/facebookresearch/SlowFast.
translated by 谷歌翻译