基于深度强化学习(DRL)的神经调度程序已经显示出巨大的解决现实世界资源分配问题的潜力,因为它们在集群计算领域表现出显着的性能增长。在本文中,我们通过广泛的实验和与非神经,启发式调度程序进行比较,调查了神经调度程序对芯片(SOC)资源分配的域(SOC)资源域的可行性。关键发现是三倍。首先,由于i)SOC计算资源的异质性和ii)由传入工作中的随机性引起的可变动作集,因此为群集计算域而设计的神经调度程序对SOC无法正常工作。其次,我们的新型神经调度程序技术,折衷的相互作用匹配(EIM)克服了上述挑战,从而显着改善了现有的神经调度程序。具体而言,我们合理化了基于EIM的神经调度程序的性能增长背后的根本原因。第三,我们发现平均处理元件(PE)切换延迟和平均PE计算时间的比率也会显着影响神经SOC调度程序的性能,即使使用EIM。因此,未来的神经SOC调度程序设计必须考虑该指标及其实施开销,以实施实用性。
translated by 谷歌翻译
高度动态的移动ad-hoc网络(MANET)仍然是开发和部署强大,高效和可扩展的路由协议的最具挑战性环境之一。在本文中,我们提出了DeepCQ +路由协议,以一种新颖的方式将新兴的多代理深度增强学习(Madrl)技术集成到现有的基于Q学习的路由协议及其变体中,并在各种拓扑结构中实现了持续更高的性能和移动配置。在保持基于Q学习的路由协议的整体协议结构的同时,DeepCQ +通过精心设计的Madrl代理替换静态配置的参数化阈值和手写规则,使得不需要这些参数的配置。广泛的模拟表明,与其基于Q学习的对应物相比,DeptCQ +产生的端到端吞吐量显着增加了端到端延迟(跳数)的明显劣化。在定性方面,也许更重要的是,Deepcq +在许多情况下维持了非常相似的性能提升,即在网络尺寸,移动条件和交通动态方面没有接受过培训。据我们所知,这是Madrl框架的第一次成功应用MANET路由问题,即使在训练有素的场景范围之外的环境中,即使在训练范围之外的环境中也能够高度的可扩展性和鲁棒性。这意味着我们的基于Marl的DeepCQ +设计解决方案显着提高了基于Q学习的CQ +基线方法的性能,以进行比较,并提高其实用性和解释性,因为现实世界的MANET环境可能会在训练范围的MANET场景之外变化。讨论了进一步提高性能和可扩展性的增益的额外技术。
translated by 谷歌翻译
The growing interest in intelligent services and privacy protection for mobile devices has given rise to the widespread application of federated learning in Multi-access Edge Computing (MEC). Diverse user behaviors call for personalized services with heterogeneous Machine Learning (ML) models on different devices. Federated Multi-task Learning (FMTL) is proposed to train related but personalized ML models for different devices, whereas previous works suffer from excessive communication overhead during training and neglect the model heterogeneity among devices in MEC. Introducing knowledge distillation into FMTL can simultaneously enable efficient communication and model heterogeneity among clients, whereas existing methods rely on a public dataset, which is impractical in reality. To tackle this dilemma, Federated MultI-task Distillation for Multi-access Edge CompuTing (FedICT) is proposed. FedICT direct local-global knowledge aloof during bi-directional distillation processes between clients and the server, aiming to enable multi-task clients while alleviating client drift derived from divergent optimization directions of client-side local models. Specifically, FedICT includes Federated Prior Knowledge Distillation (FPKD) and Local Knowledge Adjustment (LKA). FPKD is proposed to reinforce the clients' fitting of local data by introducing prior knowledge of local data distributions. Moreover, LKA is proposed to correct the distillation loss of the server, making the transferred local knowledge better match the generalized representation. Experiments on three datasets show that FedICT significantly outperforms all compared benchmarks in various data heterogeneous and model architecture settings, achieving improved accuracy with less than 1.2% training communication overhead compared with FedAvg and no more than 75% training communication round compared with FedGKT.
translated by 谷歌翻译
Most existing text-video retrieval methods focus on cross-modal matching between the visual content of offline videos and textual query sentences. However, in real scenarios, online videos are frequently accompanied by relevant text information such as titles, tags, and even subtitles, which can be utilized to match textual queries. This inspires us to generate associated captions from offline videos to help with existing text-video retrieval methods. To do so, we propose to use the zero-shot video captioner with knowledge of pre-trained web-scale models (e.g., CLIP and GPT-2) to generate captions for offline videos without any training. Given the captions, one question naturally arises: what can auxiliary captions do for text-video retrieval? In this paper, we present a novel framework Cap4Video, which makes use of captions from three aspects: i) Input data: The video and captions can form new video-caption pairs as data augmentation for training. ii) Feature interaction: We perform feature interaction between video and caption to yield enhanced video representations. iii) Output score: The Query-Caption matching branch can be complementary to the original Query-Video matching branch for text-video retrieval. We conduct thorough ablation studies to demonstrate the effectiveness of our method. Without any post-processing, our Cap4Video achieves state-of-the-art performance on MSR-VTT (51.4%), VATEX (66.6%), MSVD (51.8%), and DiDeMo (52.0%).
translated by 谷歌翻译
While the rollout of the fifth-generation mobile network (5G) is underway across the globe with the intention to deliver 4K/8K UHD videos, Augmented Reality (AR), and Virtual Reality (VR) content to the mass amounts of users, the coverage and throughput are still one of the most significant issues, especially in the rural areas, where only 5G in the low-frequency band are being deployed. This called for a high-performance adaptive bitrate (ABR) algorithm that can maximize the user quality of experience given 5G network characteristics and data rate of UHD contents. Recently, many of the newly proposed ABR techniques were machine-learning based. Among that, Pensieve is one of the state-of-the-art techniques, which utilized reinforcement-learning to generate an ABR algorithm based on observation of past decision performance. By incorporating the context of the 5G network and UHD content, Pensieve has been optimized into Pensieve 5G. New QoE metrics that more accurately represent the QoE of UHD video streaming on the different types of devices were proposed and used to evaluate Pensieve 5G against other ABR techniques including the original Pensieve. The results from the simulation based on the real 5G Standalone (SA) network throughput shows that Pensieve 5G outperforms both conventional algorithms and Pensieve with the average QoE improvement of 8.8% and 14.2%, respectively. Additionally, Pensieve 5G also performed well on the commercial 5G NR-NR Dual Connectivity (NR-DC) Network, despite the training being done solely using the data from the 5G Standalone (SA) network.
translated by 谷歌翻译
The typical way for relation extraction is fine-tuning large pre-trained language models on task-specific datasets, then selecting the label with the highest probability of the output distribution as the final prediction. However, the usage of the Top-k prediction set for a given sample is commonly overlooked. In this paper, we first reveal that the Top-k prediction set of a given sample contains useful information for predicting the correct label. To effectively utilizes the Top-k prediction set, we propose Label Graph Network with Top-k Prediction Set, termed as KLG. Specifically, for a given sample, we build a label graph to review candidate labels in the Top-k prediction set and learn the connections between them. We also design a dynamic $k$-selection mechanism to learn more powerful and discriminative relation representation. Our experiments show that KLG achieves the best performances on three relation extraction datasets. Moreover, we observe that KLG is more effective in dealing with long-tailed classes.
translated by 谷歌翻译
Sequence generation demonstrates promising performance in recent information extraction efforts, by incorporating large-scale pre-trained Seq2Seq models. This paper investigates the merits of employing sequence generation in relation extraction, finding that with relation names or synonyms as generation targets, their textual semantics and the correlation (in terms of word sequence pattern) among them affect model performance. We then propose Relation Extraction with Label Augmentation (RELA), a Seq2Seq model with automatic label augmentation for RE. By saying label augmentation, we mean prod semantically synonyms for each relation name as the generation target. Besides, we present an in-depth analysis of the Seq2Seq model's behavior when dealing with RE. Experimental results show that RELA achieves competitive results compared with previous methods on four RE datasets.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have been widely applied to different tasks such as bioinformatics, drug design, and social networks. However, recent studies have shown that GNNs are vulnerable to adversarial attacks which aim to mislead the node or subgraph classification prediction by adding subtle perturbations. Detecting these attacks is challenging due to the small magnitude of perturbation and the discrete nature of graph data. In this paper, we propose a general adversarial edge detection pipeline EDoG without requiring knowledge of the attack strategies based on graph generation. Specifically, we propose a novel graph generation approach combined with link prediction to detect suspicious adversarial edges. To effectively train the graph generative model, we sample several sub-graphs from the given graph data. We show that since the number of adversarial edges is usually low in practice, with low probability the sampled sub-graphs will contain adversarial edges based on the union bound. In addition, considering the strong attacks which perturb a large number of edges, we propose a set of novel features to perform outlier detection as the preprocessing for our detection. Extensive experimental results on three real-world graph datasets including a private transaction rule dataset from a major company and two types of synthetic graphs with controlled properties show that EDoG can achieve above 0.8 AUC against four state-of-the-art unseen attack strategies without requiring any knowledge about the attack type; and around 0.85 with knowledge of the attack type. EDoG significantly outperforms traditional malicious edge detection baselines. We also show that an adaptive attack with full knowledge of our detection pipeline is difficult to bypass it.
translated by 谷歌翻译
The task of referring video object segmentation aims to segment the object in the frames of a given video to which the referring expressions refer. Previous methods adopt multi-stage approach and design complex pipelines to obtain promising results. Recently, the end-to-end method based on Transformer has proved its superiority. In this work, we draw on the advantages of the above methods to provide a simple and effective pipeline for RVOS. Firstly, We improve the state-of-the-art one-stage method ReferFormer to obtain mask sequences that are strongly correlated with language descriptions. Secondly, based on a reliable and high-quality keyframe, we leverage the superior performance of video object segmentation model to further enhance the quality and temporal consistency of the mask results. Our single model reaches 70.3 J &F on the Referring Youtube-VOS validation set and 63.0 on the test set. After ensemble, we achieve 64.1 on the final leaderboard, ranking 1st place on CVPR2022 Referring Youtube-VOS challenge. Code will be available at https://github.com/Zhiweihhh/cvpr2022-rvos-challenge.git.
translated by 谷歌翻译
Referring image segmentation aims to segment the target object described by a given natural language expression. Typically, referring expressions contain complex relationships between the target and its surrounding objects. The main challenge of this task is to understand the visual and linguistic content simultaneously and to find the referred object accurately among all instances in the image. Currently, the most effective way to solve the above problem is to obtain aligned multi-modal features by computing the correlation between visual and linguistic feature modalities under the supervision of the ground-truth mask. However, existing paradigms have difficulty in thoroughly understanding visual and linguistic content due to the inability to perceive information directly about surrounding objects that refer to the target. This prevents them from learning aligned multi-modal features, which leads to inaccurate segmentation. To address this issue, we present a position-aware contrastive alignment network (PCAN) to enhance the alignment of multi-modal features by guiding the interaction between vision and language through prior position information. Our PCAN consists of two modules: 1) Position Aware Module (PAM), which provides position information of all objects related to natural language descriptions, and 2) Contrastive Language Understanding Module (CLUM), which enhances multi-modal alignment by comparing the features of the referred object with those of related objects. Extensive experiments on three benchmarks demonstrate our PCAN performs favorably against the state-of-the-art methods. Our code will be made publicly available.
translated by 谷歌翻译