The growing interest in intelligent services and privacy protection for mobile devices has given rise to the widespread application of federated learning in Multi-access Edge Computing (MEC). Diverse user behaviors call for personalized services with heterogeneous Machine Learning (ML) models on different devices. Federated Multi-task Learning (FMTL) is proposed to train related but personalized ML models for different devices, whereas previous works suffer from excessive communication overhead during training and neglect the model heterogeneity among devices in MEC. Introducing knowledge distillation into FMTL can simultaneously enable efficient communication and model heterogeneity among clients, whereas existing methods rely on a public dataset, which is impractical in reality. To tackle this dilemma, Federated MultI-task Distillation for Multi-access Edge CompuTing (FedICT) is proposed. FedICT direct local-global knowledge aloof during bi-directional distillation processes between clients and the server, aiming to enable multi-task clients while alleviating client drift derived from divergent optimization directions of client-side local models. Specifically, FedICT includes Federated Prior Knowledge Distillation (FPKD) and Local Knowledge Adjustment (LKA). FPKD is proposed to reinforce the clients' fitting of local data by introducing prior knowledge of local data distributions. Moreover, LKA is proposed to correct the distillation loss of the server, making the transferred local knowledge better match the generalized representation. Experiments on three datasets show that FedICT significantly outperforms all compared benchmarks in various data heterogeneous and model architecture settings, achieving improved accuracy with less than 1.2% training communication overhead compared with FedAvg and no more than 75% training communication round compared with FedGKT.
translated by 谷歌翻译
Current advances in recommender systems have been remarkably successful in optimizing immediate engagement. However, long-term user engagement, a more desirable performance metric, remains difficult to improve. Meanwhile, recent reinforcement learning (RL) algorithms have shown their effectiveness in a variety of long-term goal optimization tasks. For this reason, RL is widely considered as a promising framework for optimizing long-term user engagement in recommendation. Despite being a promising approach, the application of RL heavily relies on well-designed rewards, but designing rewards related to long-term user engagement is quite difficult. To mitigate the problem, we propose a novel paradigm, Preference-based Recommender systems (PrefRec), which allows RL recommender systems to learn from preferences about users' historical behaviors rather than explicitly defined rewards. Such preferences are easily accessible through techniques such as crowdsourcing, as they do not require any expert knowledge. With PrefRec, we can fully exploit the advantages of RL in optimizing long-term goals, while avoiding complex reward engineering. PrefRec uses the preferences to automatically train a reward function in an end-to-end manner. The reward function is then used to generate learning signals to train the recommendation policy. Furthermore, we design an effective optimization method for PrefRec, which uses an additional value function, expectile regression and reward model pre-training to improve the performance. Extensive experiments are conducted on a variety of long-term user engagement optimization tasks. The results show that PrefRec significantly outperforms previous state-of-the-art methods in all the tasks.
translated by 谷歌翻译
Motion prediction is highly relevant to the perception of dynamic objects and static map elements in the scenarios of autonomous driving. In this work, we propose PIP, the first end-to-end Transformer-based framework which jointly and interactively performs online mapping, object detection and motion prediction. PIP leverages map queries, agent queries and mode queries to encode the instance-wise information of map elements, agents and motion intentions, respectively. Based on the unified query representation, a differentiable multi-task interaction scheme is proposed to exploit the correlation between perception and prediction. Even without human-annotated HD map or agent's historical tracking trajectory as guidance information, PIP realizes end-to-end multi-agent motion prediction and achieves better performance than tracking-based and HD-map-based methods. PIP provides comprehensive high-level information of the driving scene (vectorized static map and dynamic objects with motion information), and contributes to the downstream planning and control. Code and models will be released for facilitating further research.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
多年来,Yolo系列一直是有效对象检测的事实上的行业级别标准。尤洛社区(Yolo Community)绝大多数繁荣,以丰富其在众多硬件平台和丰富场景中的使用。在这份技术报告中,我们努力将其限制推向新的水平,以坚定不移的行业应用心态前进。考虑到对真实环境中速度和准确性的多种要求,我们广泛研究了行业或学术界的最新对象检测进步。具体而言,我们从最近的网络设计,培训策略,测试技术,量化和优化方法中大量吸收了思想。最重要的是,我们整合了思想和实践,以在各种规模上建立一套可供部署的网络,以适应多元化的用例。在Yolo作者的慷慨许可下,我们将其命名为Yolov6。我们还向用户和贡献者表示热烈欢迎,以进一步增强。为了了解性能,我们的Yolov6-N在NVIDIA TESLA T4 GPU上以1234 fps的吞吐量在可可数据集上击中35.9%的AP。 Yolov6-S在495 fps处的43.5%AP罢工,在相同规模〜(Yolov5-S,Yolox-S和Ppyoloe-S)上超过其他主流探测器。我们的量化版本的Yolov6-S甚至在869 fps中带来了新的43.3%AP。此外,与其他推理速度相似的检测器相比,Yolov6-m/L的精度性能(即49.5%/52.3%)更好。我们仔细进行了实验以验证每个组件的有效性。我们的代码可在https://github.com/meituan/yolov6上提供。
translated by 谷歌翻译
旨在使用非常有限的样本识别看不见的类的几个射击分类吸引了越来越多的关注。通常,它被称为公制学习问题。几乎没有射击分类的核心问题是如何学习(1)支持和查询集中图像的一致表示以及(2)在支持和查询集之间的图像的有效度量学习。在本文中,我们表明,这两个挑战可以通过统一的查询支持变压器(QSFormer)模型同时建模。具体而言,提出的QSFormer涉及全局查询支持样品变压器(SampleFormer)分支和局部补丁变压器(PatchFormer)学习分支。 SampleFormer旨在捕获样品在支持和查询集以进行图像表示方面的依赖性。它采用编码器,解码器和交叉注意力,分别对几个射击分类任务的支持,查询(图像)表示和度量学习进行建模。同样,作为全球学习分支的补充,我们采用了局部贴片变压器,通过捕获本地图像贴片的长距离依赖性来提取每个图像样本的结构表示。此外,还提出了一种新型的跨尺度交互式提取器(CIFE)来提取和融合多尺度CNN特征,作为建议的少量学习方法的有效骨干模块。所有模块都集成到统一的框架中,并以端到端的方式进行了训练。在四个流行数据集上进行的广泛实验证明了所提出的QSFormer的有效性和优势。
translated by 谷歌翻译
由于字体之类的文本属性是文档格式和页面样式的核心设计元素,因此自动属性识别有利于全面的实用应用。现有方法在区分不同属性方面已经产生令人满意的性能,但是它们仍然在区分类似属性的情况下只有微妙的差异。此外,在现实世界中出现意外和明显的成像扭曲的现实情况下,他们的性能严重下降。在本文中,我们旨在通过提出炸玉米饼来解决这些问题,炸玉米饼是针对最常见文档场景量身定制的文本属性识别的对比框架。具体而言,炸玉米饼利用对比学习来消除由模糊和开放式属性引起的歧义陷阱。为了实现这一目标,我们从三个角度设计了学习范式:1)生成属性视图,2)提取微妙但至关重要的细节,以及3)利用有价值的视图对学习,以充分解锁预训练潜力。广泛的实验表明,Taco超过了受监督的对应物,并在多个属性识别任务上取得了最新的进步。将提供炸玉米饼的在线服务。
translated by 谷歌翻译
尽管发展了排名优化技术,但点式模型仍然是点击率(CTR)预测的主导方法。它可以归因于点式模型的校准能力,因为可以将预测视为点击概率。在实践中,通常还以排名能力来评估CTR预测模型,基于排名损失(例如,成对或列表损失)的预测模型通常比点置损失更好。先前的研究已经实验了两种损失的直接组合,以从损失中获得收益并观察到改善的性能。但是,先前的研究将输出logit的含义作为点击率,这可能会导致次优的解决方案。为了解决这个问题,我们提出了一种可以共同优化排名和校准能力的方法(简称JRC)。 JRC通过将样品的logit值与不同的标签进行对比,并约束预测概率是logit减法的函数,从而提高了排名能力。我们进一步表明JRC巩固了对逻辑的解释,其中逻辑在其中建模关节分布。通过这样的解释,我们证明JRC近似优化了上下文化的混合歧视生成目标。公共和工业数据集以及在线A/B测试的实验表明,我们的方法提高了排名和校准能力。自2022年5月以来,JRC已被部署在阿里巴巴的展示广告平台上,并获得了显着改进的绩效。
translated by 谷歌翻译
我们引入了一种降低尺寸的二阶方法(DRSOM),用于凸和非凸的不受约束优化。在类似信任区域的框架下,我们的方法保留了二阶方法的收敛性,同时仅在两个方向上使用Hessian-Vector产品。此外,计算开销仍然与一阶相当,例如梯度下降方法。我们证明该方法的复杂性为$ O(\ epsilon^{ - 3/2})$,以满足子空间中的一阶和二阶条件。DRSOM的适用性和性能通过逻辑回归,$ L_2-L_P $最小化,传感器网络定位和神经网络培训的各种计算实验展示。对于神经网络,我们的初步实施似乎在训练准确性和迭代复杂性方面与包括SGD和ADAM在内的最先进的一阶方法获得了计算优势。
translated by 谷歌翻译
我们提出了Pangu-Coder,这是一种仅预读的解码器语言模型,该模型采用pangu-alpha架构进行文本到代码生成,即给定自然语言问题描述的编程语言解决方案的合成。我们使用两阶段策略训练Pangu-Coder:第一阶段采用因果语言建模(CLM)来预先培训原始编程语言数据,而第二阶段则使用因果语言建模和掩盖语言建模(MLM)的组合培训目标,专注于文本到代码生成的下游任务,并培训松散的自然语言程序定义和代码功能。最后,我们讨论了pangu-coder-ft,该pander the是通过竞争性编程问题和代码与持续集成测试的结合进行了微调的。我们评估了pangu-coder,重点是它是否生成功能上正确的程序,并证明它在参加较小的上下文窗口和较少的数据培训的同时,它比诸如Codex之类的类似大小的模型(例如Codex)实现等效性或更好的性能。
translated by 谷歌翻译