时间序列数据出现在各种应用程序中,例如智能运输和环境监测。时间序列分析的基本问题之一是时间序列预测。尽管最近的深度时间序列预测方法取得了成功,但它们仍需要足够的历史价值观察才能进行准确的预测。换句话说,输出长度(或预测范围)与输入和输出长度之和的比率应足够低(例如,0.3)。随着比率的增加(例如,到0.8),预测准确性的不确定性显着增加。在本文中,我们从理论和经验上都表明,通过将相关时间序列检索作为参考文献可以有效地降低不确定性。在理论分析中,我们首先量化不确定性,并显示其与平方误差(MSE)的连接。然后,我们证明,带有参考的模型比没有参考的模型更容易学习,因为检索到的参考可能会降低不确定性。为了凭经验证明基于检索的时间序列预测模型的有效性,我们引入了一种简单而有效的两阶段方法,称为“保留”,该方法由关系检索和内容合成组成。我们还表明,可以轻松地适应时空时间序列和时间序列插补设置。最后,我们评估了现实世界数据集上的延迟,以证明其有效性。
translated by 谷歌翻译
对比度学习是图表学习中的有效无监督方法,对比度学习的关键组成部分在于构建正和负样本。以前的方法通常利用图中节点的接近度作为原理。最近,基于数据增强的对比度学习方法已进步以显示视觉域中的强大力量,一些作品将此方法从图像扩展到图形。但是,与图像上的数据扩展不同,图上的数据扩展远不那么直观,而且很难提供高质量的对比样品,这为改进留出了很大的空间。在这项工作中,通过引入一个对抗性图视图以进行数据增强,我们提出了一种简单但有效的方法,对抗图对比度学习(ARIEL),以在合理的约束中提取信息性的对比样本。我们开发了一种称为稳定训练的信息正则化的新技术,并使用子图抽样以进行可伸缩。我们通过将每个图形实例视为超级节点,从节点级对比度学习到图级。 Ariel始终优于在现实世界数据集上的节点级别和图形级分类任务的当前图对比度学习方法。我们进一步证明,面对对抗性攻击,Ariel更加强大。
translated by 谷歌翻译
对比度学习是图表学习中有效的无监督方法。最近,基于数据增强的对比度学习方法已从图像扩展到图形。但是,大多数先前的作品都直接根据为图像设计的模型进行了调整。与图像上的数据增强不同,图表上的数据扩展远不那么直观,而且很难提供高质量的对比样本,这是对比度学习模型的性能的关键。这为改进现有图形对比学习框架留出了很多空间。在这项工作中,通过引入对抗图视图和信息正常化程序,我们提出了一种简单但有效的方法,即对逆向对比度学习(ARIEL),以在合理的约束中提取信息性的对比样本。它始终优于各种现实世界数据集的节点分类任务中当前的图形对比度学习方法,并进一步提高了图对比度学习的鲁棒性。
translated by 谷歌翻译
图是对物体之间关系的强大表示,吸引了很多关注。图形学习的一个基本挑战是如何在没有标签的情况下训练有效的图形神经网络(GNN)编码器,这些标签既昂贵又耗时。对比学习(CL)是应对这一挑战的最受欢迎的范式之一,该挑战通过区分正和负节点对来训练GNN。尽管最近的CL方法取得了成功,但仍然存在两个爆炸案。首先,如何减少基于随机拓扑的数据增强引入的语义错误。传统CL通过节点级拓扑接近定义正和负节点对,该节点拓扑接近度仅基于图形拓扑,而不论节点属性的语义信息如何,因此某些语义上相似的节点可能被错误地视为负对。其次,如何有效地对现实图形的多重性进行建模,其中节点通过各种关系连接,并且每个关系都可以形成均匀的图层。为了解决这些问题,我们提出了一种新型的多重异质图原型对比度倾斜(X-GAL)框架来提取节点嵌入。 X-GOAL由两个组成部分组成:目标框架,该目标框架学习每个均匀图层的节点嵌入,以及一个对齐正则化,通过对齐层特定的节点嵌入来共同对不同的层进行模拟不同的层。具体而言,目标框架通过简洁的图形转换技术捕获节点级信息,并通过将节点拉到嵌入空间中的同一语义簇中,从而捕获群集级信息。对齐正则化在节点和群集级别的层上对齐嵌入。我们在各种现实世界数据集和下游任务上评估X-GAL,以证明其有效性。
translated by 谷歌翻译
Theoretical properties of bilevel problems are well studied when the lower-level problem is strongly convex. In this work, we focus on bilevel optimization problems without the strong-convexity assumption. In these cases, we first show that the common local optimality measures such as KKT condition or regularization can lead to undesired consequences. Then, we aim to identify the mildest conditions that make bilevel problems tractable. We identify two classes of growth conditions on the lower-level objective that leads to continuity. Under these assumptions, we show that the local optimality of the bilevel problem can be defined via the Goldstein stationarity condition of the hyper-objective. We then propose the Inexact Gradient-Free Method (IGFM) to solve the bilevel problem, using an approximate zeroth order oracle that is of independent interest. Our non-asymptotic analysis demonstrates that the proposed method can find a $(\delta, \varepsilon)$ Goldstein stationary point for bilevel problems with a zeroth order oracle complexity that is polynomial in $d, 1/\delta$ and $1/\varepsilon$.
translated by 谷歌翻译
A step-search sequential quadratic programming method is proposed for solving nonlinear equality constrained stochastic optimization problems. It is assumed that constraint function values and derivatives are available, but only stochastic approximations of the objective function and its associated derivatives can be computed via inexact probabilistic zeroth- and first-order oracles. Under reasonable assumptions, a high-probability bound on the iteration complexity of the algorithm to approximate first-order stationarity is derived. Numerical results on standard nonlinear optimization test problems illustrate the advantages and limitations of our proposed method.
translated by 谷歌翻译
Stance detection refers to the task of extracting the standpoint (Favor, Against or Neither) towards a target in given texts. Such research gains increasing attention with the proliferation of social media contents. The conventional framework of handling stance detection is converting it into text classification tasks. Deep learning models have already replaced rule-based models and traditional machine learning models in solving such problems. Current deep neural networks are facing two main challenges which are insufficient labeled data and information in social media posts and the unexplainable nature of deep learning models. A new pre-trained language model chatGPT was launched on Nov 30, 2022. For the stance detection tasks, our experiments show that ChatGPT can achieve SOTA or similar performance for commonly used datasets including SemEval-2016 and P-Stance. At the same time, ChatGPT can provide explanation for its own prediction, which is beyond the capability of any existing model. The explanations for the cases it cannot provide classification results are especially useful. ChatGPT has the potential to be the best AI model for stance detection tasks in NLP, or at least change the research paradigm of this field. ChatGPT also opens up the possibility of building explanatory AI for stance detection.
translated by 谷歌翻译
Image manipulation localization aims at distinguishing forged regions from the whole test image. Although many outstanding prior arts have been proposed for this task, there are still two issues that need to be further studied: 1) how to fuse diverse types of features with forgery clues; 2) how to progressively integrate multistage features for better localization performance. In this paper, we propose a tripartite progressive integration network (TriPINet) for end-to-end image manipulation localization. First, we extract both visual perception information, e.g., RGB input images, and visual imperceptible features, e.g., frequency and noise traces for forensic feature learning. Second, we develop a guided cross-modality dual-attention (gCMDA) module to fuse different types of forged clues. Third, we design a set of progressive integration squeeze-and-excitation (PI-SE) modules to improve localization performance by appropriately incorporating multiscale features in the decoder. Extensive experiments are conducted to compare our method with state-of-the-art image forensics approaches. The proposed TriPINet obtains competitive results on several benchmark datasets.
translated by 谷歌翻译
Domain adaptation aims to transfer the knowledge acquired by models trained on (data-rich) source domains to (low-resource) target domains, for which a popular method is invariant representation learning. While they have been studied extensively for classification and regression problems, how they apply to ranking problems, where the data and metrics have a list structure, is not well understood. Theoretically, we establish a domain adaptation generalization bound for ranking under listwise metrics such as MRR and NDCG. The bound suggests an adaptation method via learning list-level domain-invariant feature representations, whose benefits are empirically demonstrated by unsupervised domain adaptation experiments on real-world ranking tasks, including passage reranking. A key message is that for domain adaptation, the representations should be analyzed at the same level at which the metric is computed, as we show that learning invariant representations at the list level is most effective for adaptation on ranking problems.
translated by 谷歌翻译
Transformers have been essential to pretraining success in NLP. Other architectures have been used, but require attention layers to match benchmark accuracy. This work explores pretraining without attention. We test recently developed routing layers based on state-space models (SSM) and model architectures based on multiplicative gating. Used together these modeling choices have a large impact on pretraining accuracy. Empirically the proposed Bidirectional Gated SSM (BiGS) replicates BERT pretraining results without attention and can be extended to long-form pretraining of 4096 tokens without approximation.
translated by 谷歌翻译