珊瑚礁在维持海洋生态系统的生态平衡方面发挥着至关重要的作用。各种海洋生物依赖于珊瑚礁的存在及其自然过程。珊瑚礁为海洋生态系统各种异国情调物种提供了必要的栖息地。在本文中,我们讨论了影响珊瑚和珊瑚礁的生命周期的最重要参数,例如海洋酸化,脱氧和其他物理参数,例如流速和表面积。海洋酸化取决于溶解二氧化碳(CO2)的量。这是由于在溶解的CO 2气体与海洋中碳酸钙化合物的反应时释放H +离子。脱氧是另一个问题,其导致缺氧,其特征在于水中的较少量的水中的溶解氧量比存在海洋生物的所需量。在本文中,我们突出了物理参数的重要性,例如影响气体交换,散热,漂白敏感性,营养供应,饲养,废物和沉积物去除,生长和繁殖的流速。在本文中,我们还提出了这些重要参数,并提出了一种基于集合机器学习的模型,用于分析这些参数,并提供更好的速率,并提供更好的速率,可以帮助我们理解和适当地改善海洋组成,这反过来可以彻底改善可持续性海洋生态系统,主要是珊瑚礁
translated by 谷歌翻译
遥感是目标获取的图像,而无需与该目标进行物理接触。如今,由于其减少了图像采集期,因此遥感数据被广泛优选。地面目标的遥感更具挑战性,因为各种因素通过卫星采集的不同介质影响光的传播。遥感领域正在实现几种基于卷积神经网络的算法。监督学习是一种机器学习技术,在培训之前,数据根据其课程标记。为了更准确地检测和对目标进行分类,Yolov3,采用了基于边界和锚固框的算法。为了处理穿越大气的光的各种效果,引入了基于灰度的Yolov3配置。为了更好地预测和解决瑞利散射效果,提出了基于RGB的灰度算法。用基于灰度的YOLO3算法对获得的图像进行分析和训练,以进行目标检测。结果表明,基于灰度的方法比传统的Yolov3方法更准确,更有效地感知目标。
translated by 谷歌翻译
As various city agencies and mobility operators navigate toward innovative mobility solutions, there is a need for strategic flexibility in well-timed investment decisions in the design and timing of mobility service regions, i.e. cast as "real options" (RO). This problem becomes increasingly challenging with multiple interacting RO in such investments. We propose a scalable machine learning based RO framework for multi-period sequential service region design & timing problem for mobility-on-demand services, framed as a Markov decision process with non-stationary stochastic variables. A value function approximation policy from literature uses multi-option least squares Monte Carlo simulation to get a policy value for a set of interdependent investment decisions as deferral options (CR policy). The goal is to determine the optimal selection and timing of a set of zones to include in a service region. However, prior work required explicit enumeration of all possible sequences of investments. To address the combinatorial complexity of such enumeration, we propose a new variant "deep" RO policy using an efficient recurrent neural network (RNN) based ML method (CR-RNN policy) to sample sequences to forego the need for enumeration, making network design & timing policy tractable for large scale implementation. Experiments on multiple service region scenarios in New York City (NYC) shows the proposed policy substantially reduces the overall computational cost (time reduction for RO evaluation of > 90% of total investment sequences is achieved), with zero to near-zero gap compared to the benchmark. A case study of sequential service region design for expansion of MoD services in Brooklyn, NYC show that using the CR-RNN policy to determine optimal RO investment strategy yields a similar performance (0.5% within CR policy value) with significantly reduced computation time (about 5.4 times faster).
translated by 谷歌翻译
Springs are efficient in storing and returning elastic potential energy but are unable to hold the energy they store in the absence of an external load. Lockable springs use clutches to hold elastic potential energy in the absence of an external load but have not yet been widely adopted in applications, partly because clutches introduce design complexity, reduce energy efficiency, and typically do not afford high-fidelity control over the energy stored by the spring. Here, we present the design of a novel lockable compression spring that uses a small capstan clutch to passively lock a mechanical spring. The capstan clutch can lock up to 1000 N force at any arbitrary deflection, unlock the spring in less than 10 ms with a control force less than 1 % of the maximal spring force, and provide an 80 % energy storage and return efficiency (comparable to a highly efficient electric motor operated at constant nominal speed). By retaining the form factor of a regular spring while providing high-fidelity locking capability even under large spring forces, the proposed design could facilitate the development of energy-efficient spring-based actuators and robots.
translated by 谷歌翻译
Unmanned aerial vehicles (UAVs) mobility enables flexible and customized federated learning (FL) at the network edge. However, the underlying uncertainties in the aerial-terrestrial wireless channel may lead to a biased FL model. In particular, the distribution of the global model and the aggregation of the local updates within the FL learning rounds at the UAVs are governed by the reliability of the wireless channel. This creates an undesirable bias towards the training data of ground devices with better channel conditions, and vice versa. This paper characterizes the global bias problem of aerial FL in large-scale UAV networks. To this end, the paper proposes a channel-aware distribution and aggregation scheme to enforce equal contribution from all devices in the FL training as a means to resolve the global bias problem. We demonstrate the convergence of the proposed method by experimenting with the MNIST dataset and show its superiority compared to existing methods. The obtained results enable system parameter tuning to relieve the impact of the aerial channel deficiency on the FL convergence rate.
translated by 谷歌翻译
State space models (SSMs) have demonstrated state-of-the-art sequence modeling performance in some modalities, but underperform attention in language modeling. Moreover, despite scaling nearly linearly in sequence length instead of quadratically, SSMs are still slower than Transformers due to poor hardware utilization. In this paper, we make progress on understanding the expressivity gap between SSMs and attention in language modeling, and on reducing the hardware barrier between SSMs and attention. First, we use synthetic language modeling tasks to understand the gap between SSMs and attention. We find that existing SSMs struggle with two capabilities: recalling earlier tokens in the sequence and comparing tokens across the sequence. To understand the impact on language modeling, we propose a new SSM layer, H3, that is explicitly designed for these abilities. H3 matches attention on the synthetic languages and comes within 0.4 PPL of Transformers on OpenWebText. Furthermore, a hybrid 125M-parameter H3-attention model that retains two attention layers surprisingly outperforms Transformers on OpenWebText by 1.0 PPL. Next, to improve the efficiency of training SSMs on modern hardware, we propose FlashConv. FlashConv uses a fused block FFT algorithm to improve efficiency on sequences up to 8K, and introduces a novel state passing algorithm that exploits the recurrent properties of SSMs to scale to longer sequences. FlashConv yields 2$\times$ speedup on the long-range arena benchmark and allows hybrid language models to generate text 1.6$\times$ faster than Transformers. Using FlashConv, we scale hybrid H3-attention language models up to 1.3B parameters on the Pile and find promising initial results, achieving lower perplexity than Transformers and outperforming Transformers in zero- and few-shot learning on a majority of tasks in the SuperGLUE benchmark.
translated by 谷歌翻译
A "heart attack" or myocardial infarction (MI), occurs when an artery supplying blood to the heart is abruptly occluded. The "gold standard" method for imaging MI is Cardiovascular Magnetic Resonance Imaging (MRI), with intravenously administered gadolinium-based contrast (late gadolinium enhancement). However, no "gold standard" fully automated method for the quantification of MI exists. In this work, we propose an end-to-end fully automatic system (MyI-Net) for the detection and quantification of MI in MRI images. This has the potential to reduce the uncertainty due to the technical variability across labs and inherent problems of the data and labels. Our system consists of four processing stages designed to maintain the flow of information across scales. First, features from raw MRI images are generated using feature extractors built on ResNet and MoblieNet architectures. This is followed by the Atrous Spatial Pyramid Pooling (ASPP) to produce spatial information at different scales to preserve more image context. High-level features from ASPP and initial low-level features are concatenated at the third stage and then passed to the fourth stage where spatial information is recovered via up-sampling to produce final image segmentation output into: i) background, ii) heart muscle, iii) blood and iv) scar areas. New models were compared with state-of-art models and manual quantification. Our models showed favorable performance in global segmentation and scar tissue detection relative to state-of-the-art work, including a four-fold better performance in matching scar pixels to contours produced by clinicians.
translated by 谷歌翻译
The success of deep learning is largely due to the availability of large amounts of training data that cover a wide range of examples of a particular concept or meaning. In the field of medicine, having a diverse set of training data on a particular disease can lead to the development of a model that is able to accurately predict the disease. However, despite the potential benefits, there have not been significant advances in image-based diagnosis due to a lack of high-quality annotated data. This article highlights the importance of using a data-centric approach to improve the quality of data representations, particularly in cases where the available data is limited. To address this "small-data" issue, we discuss four methods for generating and aggregating training data: data augmentation, transfer learning, federated learning, and GANs (generative adversarial networks). We also propose the use of knowledge-guided GANs to incorporate domain knowledge in the training data generation process. With the recent progress in large pre-trained language models, we believe it is possible to acquire high-quality knowledge that can be used to improve the effectiveness of knowledge-guided generative methods.
translated by 谷歌翻译
Traditionally, data analysis and theory have been viewed as separate disciplines, each feeding into fundamentally different types of models. Modern deep learning technology is beginning to unify these two disciplines and will produce a new class of predictively powerful space weather models that combine the physical insights gained by data and theory. We call on NASA to invest in the research and infrastructure necessary for the heliophysics' community to take advantage of these advances.
translated by 谷歌翻译
Three main points: 1. Data Science (DS) will be increasingly important to heliophysics; 2. Methods of heliophysics science discovery will continually evolve, requiring the use of learning technologies [e.g., machine learning (ML)] that are applied rigorously and that are capable of supporting discovery; and 3. To grow with the pace of data, technology, and workforce changes, heliophysics requires a new approach to the representation of knowledge.
translated by 谷歌翻译