Although query-based systems (QBS) have become one of the main solutions to share data anonymously, building QBSes that robustly protect the privacy of individuals contributing to the dataset is a hard problem. Theoretical solutions relying on differential privacy guarantees are difficult to implement correctly with reasonable accuracy, while ad-hoc solutions might contain unknown vulnerabilities. Evaluating the privacy provided by QBSes must thus be done by evaluating the accuracy of a wide range of privacy attacks. However, existing attacks require time and expertise to develop, need to be manually tailored to the specific systems attacked, and are limited in scope. In this paper, we develop QuerySnout (QS), the first method to automatically discover vulnerabilities in QBSes. QS takes as input a target record and the QBS as a black box, analyzes its behavior on one or more datasets, and outputs a multiset of queries together with a rule to combine answers to them in order to reveal the sensitive attribute of the target record. QS uses evolutionary search techniques based on a novel mutation operator to find a multiset of queries susceptible to lead to an attack, and a machine learning classifier to infer the sensitive attribute from answers to the queries selected. We showcase the versatility of QS by applying it to two attack scenarios, three real-world datasets, and a variety of protection mechanisms. We show the attacks found by QS to consistently equate or outperform, sometimes by a large margin, the best attacks from the literature. We finally show how QS can be extended to QBSes that require a budget, and apply QS to a simple QBS based on the Laplace mechanism. Taken together, our results show how powerful and accurate attacks against QBSes can already be found by an automated system, allowing for highly complex QBSes to be automatically tested "at the pressing of a button".
translated by 谷歌翻译
We present a Quality-Diversity benchmark suite for Deep Neuroevolution in Reinforcement Learning domains for robot control. The suite includes the definition of tasks, environments, behavioral descriptors, and fitness. We specify different benchmarks based on the complexity of both the task and the agent controlled by a deep neural network. The benchmark uses standard Quality-Diversity metrics, including coverage, QD-score, maximum fitness, and an archive profile metric to quantify the relation between coverage and fitness. We also present how to quantify the robustness of the solutions with respect to environmental stochasticity by introducing corrected versions of the same metrics. We believe that our benchmark is a valuable tool for the community to compare and improve their findings. The source code is available online: https://github.com/adaptive-intelligent-robotics/QDax
translated by 谷歌翻译
大自然的一个迷人方面在于它能够产生大型和多样化的生物体,这些生物都在他们的利基中都很高兴。相比之下,大多数AI算法专注于向给定问题找到一个有效的解决方案。除了表现外,旨在实现多样性是处理勘探开发权衡的便捷方式,在学习中发挥着核心作用。当返回的集合包含对所考虑的问题的几个工作解决方案时,它还允许增加鲁棒性,使其适用于机器人等真实应用。质量 - 多样性(QD)方法是为此目的设计的进化算法。本文提出了一种新颖的QD - PG,它结合了政策梯度算法的强度和质量多样性方法,在连续控制环境中产生了各种和高性能的神经政策的集合。这项工作的主要贡献是引入多样性政策梯度(DPG),该梯度(DPG)利用时刻级别的信息以采样有效的方式培养更多样化的策略。具体而言,QD-PG从地图 - E LITES网格中选择神经控制器,并使用两个基于梯度的突变运算符来提高质量和多样性,从而产生稳定的人口更新。我们的结果表明,QD - PG产生了各种解决方案的集合,解决了具有挑战性的勘探和控制问题,同时是比其进化竞争对手更高的样本效率的两个数量级。
translated by 谷歌翻译
Reading comprehension of legal text can be a particularly challenging task due to the length and complexity of legal clauses and a shortage of expert-annotated datasets. To address this challenge, we introduce the Merger Agreement Understanding Dataset (MAUD), an expert-annotated reading comprehension dataset based on the American Bar Association's 2021 Public Target Deal Points Study, with over 39,000 examples and over 47,000 total annotations. Our fine-tuned Transformer baselines show promising results, with models performing well above random on most questions. However, on a large subset of questions, there is still room for significant improvement. As the only expert-annotated merger agreement dataset, MAUD is valuable as a benchmark for both the legal profession and the NLP community.
translated by 谷歌翻译
The increasingly widespread adoption of large language models has highlighted the need for improving their explainability. We present context length probing, a novel explanation technique for causal language models, based on tracking the predictions of a model as a function of the length of available context, and allowing to assign differential importance scores to different contexts. The technique is model-agnostic and does not rely on access to model internals beyond computing token-level probabilities. We apply context length probing to large pre-trained language models and offer some initial analyses and insights, including the potential for studying long-range dependencies. The source code and a demo of the method are available.
translated by 谷歌翻译
Over the past decade, neural networks have been successful at making predictions from biological sequences, especially in the context of regulatory genomics. As in other fields of deep learning, tools have been devised to extract features such as sequence motifs that can explain the predictions made by a trained network. Here we intend to go beyond explainable machine learning and introduce SEISM, a selective inference procedure to test the association between these extracted features and the predicted phenotype. In particular, we discuss how training a one-layer convolutional network is formally equivalent to selecting motifs maximizing some association score. We adapt existing sampling-based selective inference procedures by quantizing this selection over an infinite set to a large but finite grid. Finally, we show that sampling under a specific choice of parameters is sufficient to characterize the composite null hypothesis typically used for selective inference-a result that goes well beyond our particular framework. We illustrate the behavior of our method in terms of calibration, power and speed and discuss its power/speed trade-off with a simpler data-split strategy. SEISM paves the way to an easier analysis of neural networks used in regulatory genomics, and to more powerful methods for genome wide association studies (GWAS).
translated by 谷歌翻译
Recent methods demonstrate that data augmentation using counterfactual knowledge can teach models the causal structure of a task, leading to robust and generalizable models. However, such counterfactual data often has a limited scale and diversity if crowdsourced and is computationally expensive to extend to new perturbation types if generated using supervised methods. To address this, we introduce a new framework called DISCO for automatically generating high-quality counterfactual data at scale. DISCO engineers prompts to generate phrasal perturbations with a large general language model. Then, a task-specific teacher model filters the generation to distill high-quality counterfactual data. We show that learning with this counterfactual data yields a comparatively small student model that is 6% (absolute) more robust and generalizes 5% better across distributions than baselines on various challenging evaluations. This model is also 15% more sensitive in differentiating original and counterfactual examples, on three evaluation sets written by human workers and via human-AI collaboration.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
We study inductive matrix completion (matrix completion with side information) under an i.i.d. subgaussian noise assumption at a low noise regime, with uniform sampling of the entries. We obtain for the first time generalization bounds with the following three properties: (1) they scale like the standard deviation of the noise and in particular approach zero in the exact recovery case; (2) even in the presence of noise, they converge to zero when the sample size approaches infinity; and (3) for a fixed dimension of the side information, they only have a logarithmic dependence on the size of the matrix. Differently from many works in approximate recovery, we present results both for bounded Lipschitz losses and for the absolute loss, with the latter relying on Talagrand-type inequalities. The proofs create a bridge between two approaches to the theoretical analysis of matrix completion, since they consist in a combination of techniques from both the exact recovery literature and the approximate recovery literature.
translated by 谷歌翻译
With an increasing amount of data in the art world, discovering artists and artworks suitable to collectors' tastes becomes a challenge. It is no longer enough to use visual information, as contextual information about the artist has become just as important in contemporary art. In this work, we present a generic Natural Language Processing framework (called ArtLM) to discover the connections among contemporary artists based on their biographies. In this approach, we first continue to pre-train the existing general English language models with a large amount of unlabelled art-related data. We then fine-tune this new pre-trained model with our biography pair dataset manually annotated by a team of professionals in the art industry. With extensive experiments, we demonstrate that our ArtLM achieves 85.6% accuracy and 84.0% F1 score and outperforms other baseline models. We also provide a visualisation and a qualitative analysis of the artist network built from ArtLM's outputs.
translated by 谷歌翻译