Terabytes of data are collected every day by wind turbine manufacturers from their fleets. The data contain valuable real-time information for turbine health diagnostics and performance monitoring, for predicting rare failures and the remaining service life of critical parts. And yet, this wealth of data from wind turbine fleets remains inaccessible to operators, utility companies, and researchers as manufacturing companies prefer the privacy of their fleets' turbine data for business strategic reasons. The lack of data access impedes the exploitation of opportunities, such as improving data-driven turbine operation and maintenance strategies and reducing downtimes. We present a distributed federated machine learning approach that leaves the data on the wind turbines to preserve the data privacy, as desired by manufacturers, while still enabling fleet-wide learning on those local data. We demonstrate in a case study that wind turbines which are scarce in representative training data benefit from more accurate fault detection models with federated learning, while no turbine experiences a loss in model performance by participating in the federated learning process. When comparing conventional and federated training processes, the average model training time rises significantly by a factor of 7 in the federated training due to increased communication and overhead operations. Thus, model training times might constitute an impediment that needs to be further explored and alleviated in federated learning applications, especially for large wind turbine fleets.
translated by 谷歌翻译
大多数风力涡轮机受到24/7的远程监测,以允许早期发现操作问题并产生损坏。我们提出了一种新的故障检测方法,用于不需要任何功能工程的振动监控传动系统。我们的方法依赖于简单的模型体系结构来实践中实现直接实现。我们建议将卷积自动编码器以自动方式从半频谱中识别和提取最相关的功能,从而节省时间和精力。因此,从过去的测量值中学习了受监测组件的正常振动响应的光谱模型。我们证明该模型可以成功区分受损部件,并从其振动响应中检测出受损的发电机轴承和损坏的变速箱零件。使用商用风力涡轮机和测试钻机的测量结果,我们表明,可以在没有光谱特征的常规前期定义的情况下进行风力涡轮机传动系统中的基于振动的故障检测。提出方法的另一个优点是,监测整个半频谱,而不是通常关注各个频率和谐波。
translated by 谷歌翻译
Due to the environmental impacts caused by the construction industry, repurposing existing buildings and making them more energy-efficient has become a high-priority issue. However, a legitimate concern of land developers is associated with the buildings' state of conservation. For that reason, infrared thermography has been used as a powerful tool to characterize these buildings' state of conservation by detecting pathologies, such as cracks and humidity. Thermal cameras detect the radiation emitted by any material and translate it into temperature-color-coded images. Abnormal temperature changes may indicate the presence of pathologies, however, reading thermal images might not be quite simple. This research project aims to combine infrared thermography and machine learning (ML) to help stakeholders determine the viability of reusing existing buildings by identifying their pathologies and defects more efficiently and accurately. In this particular phase of this research project, we've used an image classification machine learning model of Convolutional Neural Networks (DCNN) to differentiate three levels of cracks in one particular building. The model's accuracy was compared between the MSX and thermal images acquired from two distinct thermal cameras and fused images (formed through multisource information) to test the influence of the input data and network on the detection results.
translated by 谷歌翻译
Passive monitoring of acoustic or radio sources has important applications in modern convenience, public safety, and surveillance. A key task in passive monitoring is multiobject tracking (MOT). This paper presents a Bayesian method for multisensor MOT for challenging tracking problems where the object states are high-dimensional, and the measurements follow a nonlinear model. Our method is developed in the framework of factor graphs and the sum-product algorithm (SPA). The multimodal probability density functions (pdfs) provided by the SPA are effectively represented by a Gaussian mixture model (GMM). To perform the operations of the SPA in high-dimensional spaces, we make use of Particle flow (PFL). Here, particles are migrated towards regions of high likelihood based on the solution of a partial differential equation. This makes it possible to obtain good object detection and tracking performance even in challenging multisensor MOT scenarios with single sensor measurements that have a lower dimension than the object positions. We perform a numerical evaluation in a passive acoustic monitoring scenario where multiple sources are tracked in 3-D from 1-D time-difference-of-arrival (TDOA) measurements provided by pairs of hydrophones. Our numerical results demonstrate favorable detection and estimation accuracy compared to state-of-the-art reference techniques.
translated by 谷歌翻译
Location-aware networks will introduce new services and applications for modern convenience, surveillance, and public safety. In this paper, we consider the problem of cooperative localization in a wireless network where the position of certain anchor nodes can be controlled. We introduce an active planning method that aims at moving the anchors such that the information gain of future measurements is maximized. In the control layer of the proposed method, control inputs are calculated by minimizing the traces of approximate inverse Bayesian Fisher information matrixes (FIMs). The estimation layer computes estimates of the agent states and provides Gaussian representations of marginal posteriors of agent positions to the control layer for approximate Bayesian FIM computations. Based on a cost function that accumulates Bayesian FIM contributions over a sliding window of discrete future timesteps, a receding horizon (RH) control is performed. Approximations that make it possible to solve the resulting tree-search problem efficiently are also discussed. A numerical case study demonstrates the intelligent behavior of a single controlled anchor in a 3-D scenario and the resulting significantly improved localization accuracy.
translated by 谷歌翻译
Knowledge distillation (KD) has gained a lot of attention in the field of model compression for edge devices thanks to its effectiveness in compressing large powerful networks into smaller lower-capacity models. Online distillation, in which both the teacher and the student are learning collaboratively, has also gained much interest due to its ability to improve on the performance of the networks involved. The Kullback-Leibler (KL) divergence ensures the proper knowledge transfer between the teacher and student. However, most online KD techniques present some bottlenecks under the network capacity gap. By cooperatively and simultaneously training, the models the KL distance becomes incapable of properly minimizing the teacher's and student's distributions. Alongside accuracy, critical edge device applications are in need of well-calibrated compact networks. Confidence calibration provides a sensible way of getting trustworthy predictions. We propose BD-KD: Balancing of Divergences for online Knowledge Distillation. We show that adaptively balancing between the reverse and forward divergences shifts the focus of the training strategy to the compact student network without limiting the teacher network's learning process. We demonstrate that, by performing this balancing design at the level of the student distillation loss, we improve upon both performance accuracy and calibration of the compact student network. We conducted extensive experiments using a variety of network architectures and show improvements on multiple datasets including CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet. We illustrate the effectiveness of our approach through comprehensive comparisons and ablations with current state-of-the-art online and offline KD techniques.
translated by 谷歌翻译
Temporal action segmentation tags action labels for every frame in an input untrimmed video containing multiple actions in a sequence. For the task of temporal action segmentation, we propose an encoder-decoder-style architecture named C2F-TCN featuring a "coarse-to-fine" ensemble of decoder outputs. The C2F-TCN framework is enhanced with a novel model agnostic temporal feature augmentation strategy formed by the computationally inexpensive strategy of the stochastic max-pooling of segments. It produces more accurate and well-calibrated supervised results on three benchmark action segmentation datasets. We show that the architecture is flexible for both supervised and representation learning. In line with this, we present a novel unsupervised way to learn frame-wise representation from C2F-TCN. Our unsupervised learning approach hinges on the clustering capabilities of the input features and the formation of multi-resolution features from the decoder's implicit structure. Further, we provide the first semi-supervised temporal action segmentation results by merging representation learning with conventional supervised learning. Our semi-supervised learning scheme, called ``Iterative-Contrastive-Classify (ICC)'', progressively improves in performance with more labeled data. The ICC semi-supervised learning in C2F-TCN, with 40% labeled videos, performs similar to fully supervised counterparts.
translated by 谷歌翻译
We propose Panoptic Lifting, a novel approach for learning panoptic 3D volumetric representations from images of in-the-wild scenes. Once trained, our model can render color images together with 3D-consistent panoptic segmentation from novel viewpoints. Unlike existing approaches which use 3D input directly or indirectly, our method requires only machine-generated 2D panoptic segmentation masks inferred from a pre-trained network. Our core contribution is a panoptic lifting scheme based on a neural field representation that generates a unified and multi-view consistent, 3D panoptic representation of the scene. To account for inconsistencies of 2D instance identifiers across views, we solve a linear assignment with a cost based on the model's current predictions and the machine-generated segmentation masks, thus enabling us to lift 2D instances to 3D in a consistent way. We further propose and ablate contributions that make our method more robust to noisy, machine-generated labels, including test-time augmentations for confidence estimates, segment consistency loss, bounded segmentation fields, and gradient stopping. Experimental results validate our approach on the challenging Hypersim, Replica, and ScanNet datasets, improving by 8.4, 13.8, and 10.6% in scene-level PQ over state of the art.
translated by 谷歌翻译
Algorithmic solutions for multi-object tracking (MOT) are a key enabler for applications in autonomous navigation and applied ocean sciences. State-of-the-art MOT methods fully rely on a statistical model and typically use preprocessed sensor data as measurements. In particular, measurements are produced by a detector that extracts potential object locations from the raw sensor data collected for a discrete time step. This preparatory processing step reduces data flow and computational complexity but may result in a loss of information. State-of-the-art Bayesian MOT methods that are based on belief propagation (BP) systematically exploit graph structures of the statistical model to reduce computational complexity and improve scalability. However, as a fully model-based approach, BP can only provide suboptimal estimates when there is a mismatch between the statistical model and the true data-generating process. Existing BP-based MOT methods can further only make use of preprocessed measurements. In this paper, we introduce a variant of BP that combines model-based with data-driven MOT. The proposed neural enhanced belief propagation (NEBP) method complements the statistical model of BP by information learned from raw sensor data. This approach conjectures that the learned information can reduce model mismatch and thus improve data association and false alarm rejection. Our NEBP method improves tracking performance compared to model-based methods. At the same time, it inherits the advantages of BP-based MOT, i.e., it scales only quadratically in the number of objects, and it can thus generate and maintain a large number of object tracks. We evaluate the performance of our NEBP approach for MOT on the nuScenes autonomous driving dataset and demonstrate that it has state-of-the-art performance.
translated by 谷歌翻译
After the introduction of smartphones and smartwatches, AR glasses are considered the next breakthrough in the field of wearables. While the transition from smartphones to smartwatches was based mainly on established display technologies, the display technology of AR glasses presents a technological challenge. Many display technologies, such as retina projectors, are based on continuous adaptive control of the display based on the user's pupil position. Furthermore, head-mounted systems require an adaptation and extension of established interaction concepts to provide the user with an immersive experience. Eye-tracking is a crucial technology to help AR glasses achieve a breakthrough through optimized display technology and gaze-based interaction concepts. Available eye-tracking technologies, such as VOG, do not meet the requirements of AR glasses, especially regarding power consumption, robustness, and integrability. To further overcome these limitations and push mobile eye-tracking for AR glasses forward, novel laser-based eye-tracking sensor technologies are researched in this thesis. The thesis contributes to a significant scientific advancement towards energy-efficient mobile eye-tracking for AR glasses.
translated by 谷歌翻译