强大而广义的工具操作需要了解不同工具的属性和提供的功能。我们研究有关工具的语言信息(例如,其几何形状,常用用途)是否可以帮助控制策略更快地适应给定任务的新工具。我们获得了自然语言中各种工具的各种描述,并使用预训练的语言模型来生成其功能表示。然后,我们执行语言条件的元学习,以学习可以有效地适应新工具的政策。我们的结果表明,将语言信息和元学习结合起来可以显着加速工具在几个操纵任务中的学习,包括推动,举重,清扫和锤击。
translated by 谷歌翻译
安全是自主系统的关键组成部分,仍然是现实世界中要使用的基于学习的政策的挑战。特别是,由于不安全的行为,使用强化学习学习的政策通常无法推广到新的环境。在本文中,我们提出了SIM到LAB到实验室,以弥合现实差距,并提供概率保证的安全意见政策分配。为了提高安全性,我们采用双重政策设置,其中通过累积任务奖励对绩效政策进行培训,并通过根据汉密尔顿 - 雅各布(Hamilton-Jacobi)(HJ)达到可达性分析来培训备用(安全)政策。在SIM到LAB转移中,我们采用监督控制方案来掩盖探索过程中不安全的行动;在实验室到实验室的转移中,我们利用大约正确的(PAC) - 贝斯框架来提供有关在看不见环境中政策的预期性能和安全性的下限。此外,从HJ可达性分析继承,界限说明了每个环境中最坏情况安全性的期望。我们从经验上研究了两种类型的室内环境中的自我视频导航框架,具有不同程度的光真实性。我们还通过具有四足机器人的真实室内空间中的硬件实验来证明强大的概括性能。有关补充材料,请参见https://sites.google.com/princeton.edu/sim-to-lab-to-real。
translated by 谷歌翻译
我们的激励是以富裕的感觉输入(例如,愿景)的机器人系统的学习政策的问题,以便我们在培训期间保证概念的环境概括。我们提供了一个框架,用于通过利用现实世界环境的有限数据集结合(可能不准确)的环境的生成模型来提供这种概括保证。我们的方法背后的关键思想是利用生成模型,以便在策略之前隐式指定。通过最小化通过可能大致正确(PAC)泛化理论的新颖环境中预期成本的上限,使用环境的实际数据集更新。我们在两个模拟系统上展示了具有非线性/混合动态和富有的传感方式的两种模拟系统:(i)用板载视觉传感器的四轮车导航,并使用深度传感器抓住物体。与现有工作的比较展示了我们利用生成模型获得更强的泛化担保的能力。我们还提供了用于验证我们掌握任务的界限的硬件实验。
translated by 谷歌翻译
我们的目标是培训概括到看不见的环境的控制政策。灵感来自分布稳健的优化(DRO)框架,我们提出了通过对抗的环境的拖拉 - 分布鲁棒政策学习 - 通过产生对抗性环境来迭代提高对现实分布班次的鲁棒性。关键的想法是为潜在变量捕获环境中成本预测和现实变化的环境来学习生成模型。我们通过在潜在空间上通过梯度上升产生现实的对抗性环境,在环境的经验分布周围来对Wasserstein球进行DRO。我们展示了强大的分发(OOD)泛化在仿真中(i)用板载视觉摆动摆动柱子和(ii)掌握现实的3D对象。与域随机化相比,掌握硬件实验表明更好的SIM2REAL性能。
translated by 谷歌翻译
模拟和混合信号(AMS)电路设计仍然依赖于人类设计专业知识。机器学习一直通过用人工智能代替人类的体验来协助电路设计自动化。本文介绍了标签,这是一种从利用文本,自我注意力和图形的布局中学习电路表示的新范式。嵌入网络模型在无手动标签的情况下学习空间信息。我们向AMS电路学习介绍文本嵌入和自我注意的机制。实验结果表明,具有工业罚款技术基准的实例之间的布局距离的能力。通过在案例研究中显示有限数据的其他三个学习任务的转移性,可以验证电路表示的有效性:布局匹配预测,线长度估计和净寄生电容预测。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
开放程序代表全球手术的主要形式。人工智能(AI)有可能优化手术实践并改善患者结果,但努力主要集中在微创技术上。我们的工作通过策划,从YouTube,从YouTube,Open Surgical视频的最大数据集克服了培训AI模型的现有数据限制:1997年从50个国家上传的23个外科手术的视频。使用此数据集,我们开发了一种能够实时了解外科行为,手和工具的多任务AI模型 - 程序流程和外科医生技能的构建块。我们表明我们的模型推广了各种外科类型和环境。说明这种普遍性,我们直接应用了YouTube培训的模型,分析了在学术医疗中心前瞻性收集的开放式手术,并确定了与手动效率相关的外科技能的运动学描述符。我们的开放外科(AVOS)数据集和培训模式的注释视频将可用于进一步发展外科艾。
translated by 谷歌翻译
AI正在经历范式转变,随着模型的兴起(例如Bert,Dall-E,GPT-3),这些模型经过大规模的数据训练,并且可以适应广泛的下游任务。我们称这些模型基础模型来强调其至关重要但不完整的特征。该报告提供了基础模型的机会和风险的详尽说明,包括其功能(例如语言,愿景,机器人技术,推理,人类互动)和技术原则(例如,模型架构,培训程序,数据,系统,安全,安全性,评估,理论)对其应用(例如法律,医疗保健,教育)和社会影响(例如不平等,滥用,经济和环境影响,法律和道德考虑)。尽管基础模型基于标准的深度学习和转移学习,但它们的规模导致了新的新兴能力,以及它们在许多任务中的有效性都激发了同质化。同质化提供了强大的杠杆作用,但要求谨慎,因为基础模型的缺陷均由下游的所有适应模型继承。尽管即将广泛地部署基础模型,但我们目前对它们的工作方式,失败以及由于其新兴属性的影响而缺乏清晰的了解。为了解决这些问题,我们认为基础模型的许多批判性研究都需要与他们的基本社会技术性质相称。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
Face Anti-spoofing (FAS) is essential to secure face recognition systems from various physical attacks. However, recent research generally focuses on short-distance applications (i.e., phone unlocking) while lacking consideration of long-distance scenes (i.e., surveillance security checks). In order to promote relevant research and fill this gap in the community, we collect a large-scale Surveillance High-Fidelity Mask (SuHiFiMask) dataset captured under 40 surveillance scenes, which has 101 subjects from different age groups with 232 3D attacks (high-fidelity masks), 200 2D attacks (posters, portraits, and screens), and 2 adversarial attacks. In this scene, low image resolution and noise interference are new challenges faced in surveillance FAS. Together with the SuHiFiMask dataset, we propose a Contrastive Quality-Invariance Learning (CQIL) network to alleviate the performance degradation caused by image quality from three aspects: (1) An Image Quality Variable module (IQV) is introduced to recover image information associated with discrimination by combining the super-resolution network. (2) Using generated sample pairs to simulate quality variance distributions to help contrastive learning strategies obtain robust feature representation under quality variation. (3) A Separate Quality Network (SQN) is designed to learn discriminative features independent of image quality. Finally, a large number of experiments verify the quality of the SuHiFiMask dataset and the superiority of the proposed CQIL.
translated by 谷歌翻译