Real-world robotic grasping can be done robustly if a complete 3D Point Cloud Data (PCD) of an object is available. However, in practice, PCDs are often incomplete when objects are viewed from few and sparse viewpoints before the grasping action, leading to the generation of wrong or inaccurate grasp poses. We propose a novel grasping strategy, named 3DSGrasp, that predicts the missing geometry from the partial PCD to produce reliable grasp poses. Our proposed PCD completion network is a Transformer-based encoder-decoder network with an Offset-Attention layer. Our network is inherently invariant to the object pose and point's permutation, which generates PCDs that are geometrically consistent and completed properly. Experiments on a wide range of partial PCD show that 3DSGrasp outperforms the best state-of-the-art method on PCD completion tasks and largely improves the grasping success rate in real-world scenarios. The code and dataset will be made available upon acceptance.
translated by 谷歌翻译
The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
translated by 谷歌翻译
主动感知和凹觉视觉是人类视觉系统的基础。虽然动脉凹视觉减少了在注视期间要处理的信息的量,但主动感知会将凝视方向转变为视野中最有前途的部分。我们提出了一种方法,以模仿人类和机器人使用中央摄像机探索场景,并以最少的凝视转移来识别周围环境中存在的物体。我们的方法基于三种关键方法。首先,我们采用现成的深度对象检测器,并在大量的常规图像数据集上进行了预训练,并将分类输出校准为foveateat图像的情况。其次,考虑了几种数据融合技术,对对象分类和相应的不确定性编码对象分类和相应的不确定性进行了依次更新。第三,下一个最好的目光固定点是基于信息理论指标确定的,旨在最大程度地减少语义图的总预期不确定性。与随机选择的下一个凝视转移相比,提出的方法可以使检测的F1分数增加2-3个百分点,以相同数量的凝视偏移,并减少三分之一,而三分之一则是所需的凝视转移数量以达到相似的性能。
translated by 谷歌翻译
在人类机器人的相互作用中,眼球运动在非语言交流中起着重要作用。但是,控制机器人眼的动作表现出与人眼动物系统相似的性能仍然是一个重大挑战。在本文中,我们研究了如何使用电缆驱动的驱动系统来控制人眼的现实模型,该系统模仿了六个眼外肌肉的自由度。仿生设计引入了解决新的挑战,最值得注意的是,需要控制每种肌肉的支撑,以防止运动过程中的紧张感损失,这将导致电缆松弛和缺乏控制。我们构建了一个机器人原型,并开发了一个非线性模拟器和两个控制器。在第一种方法中,我们使用局部衍生技术线性化了非线性模型,并设计了线性 - 季度最佳控制器,以优化计算准确性,能量消耗和运动持续时间的成本函数。第二种方法使用复发性神经网络,该神经网络从系统的样本轨迹中学习非线性系统动力学,以及一个非线性轨迹优化求解器,可最大程度地减少相似的成本函数。我们专注于具有完全不受限制的运动学的快速saccadic眼球运动,以及六根电缆的控制信号的生成,这些电缆同时满足了几个动态优化标准。该模型忠实地模仿了人类扫视观察到的三维旋转运动学和动力学。我们的实验结果表明,尽管两种方法都产生了相似的结果,但非线性方法对于未来改进该模型的方法更加灵活,该模型的计算是线性化模型的位置依赖性偏向和局部衍生物的计算变得特别乏味。
translated by 谷歌翻译
图像和视频中的消防本地化是自治系统对抗火事故的重要一步。基于深神经网络的最先进的图像分割方法需要大量的像素注释样本以以完全监督的方式训练卷积神经网络(CNNS)。在本文中,我们考虑了图像中的火灾的弱监管,其中仅使用图像标签来训练网络。我们示出在火灾分割的情况下,这是二进制分割问题,分类中的中层中的特征的平均值可以比传统的类激活映射(CAM)方法更好。我们还建议通过在上次卷积层的特征上添加旋转等值正则化损耗来进一步提高分割精度。我们的结果表明,对弱势监督的火灾细分的基线方法显着改善。
translated by 谷歌翻译
探测和火灾中的图像和视频的定位是在应对火灾事故的重要。虽然语义分割方法可以用来表示在图像火像素的位置,他们的预测是局部的,他们往往没有考虑到火图像中的存在,这是在图像标签隐含的全局信息。我们提出了一个卷积神经网络(CNN)联合分类和图像火的分割提高了防火分割的性能。我们使用的空间自注意机制来捕获其使用分类概率作为关注重量的新信道注意模块的像素之间的远程相关性,和。该网络联合训练既分割和分类,从而提高了的单任务的图像分割方法的性能,并提出了防火分割以前的方法。
translated by 谷歌翻译
Artificial intelligence (AI) and robotic coaches promise the improved engagement of patients on rehabilitation exercises through social interaction. While previous work explored the potential of automatically monitoring exercises for AI and robotic coaches, the deployment of these systems remains a challenge. Previous work described the lack of involving stakeholders to design such functionalities as one of the major causes. In this paper, we present our efforts on eliciting the detailed design specifications on how AI and robotic coaches could interact with and guide patient's exercises in an effective and acceptable way with four therapists and five post-stroke survivors. Through iterative questionnaires and interviews, we found that both post-stroke survivors and therapists appreciated the potential benefits of AI and robotic coaches to achieve more systematic management and improve their self-efficacy and motivation on rehabilitation therapy. In addition, our evaluation sheds light on several practical concerns (e.g. a possible difficulty with the interaction for people with cognitive impairment, system failures, etc.). We discuss the value of early involvement of stakeholders and interactive techniques that complement system failures, but also support a personalized therapy session for the better deployment of AI and robotic exercise coaches.
translated by 谷歌翻译
Model estimates obtained from traditional subspace identification methods may be subject to significant variance. This elevated variance is aggravated in the cases of large models or of a limited sample size. Common solutions to reduce the effect of variance are regularized estimators, shrinkage estimators and Bayesian estimation. In the current work we investigate the latter two solutions, which have not yet been applied to subspace identification. Our experimental results show that our proposed estimators may reduce the estimation risk up to $40\%$ of that of traditional subspace methods.
translated by 谷歌翻译
This report summarizes the work carried out by the authors during the Twelfth Montreal Industrial Problem Solving Workshop, held at Universit\'e de Montr\'eal in August 2022. The team tackled a problem submitted by CBC/Radio-Canada on the theme of Automatic Text Simplification (ATS).
translated by 谷歌翻译
Counterfactual explanation is a common class of methods to make local explanations of machine learning decisions. For a given instance, these methods aim to find the smallest modification of feature values that changes the predicted decision made by a machine learning model. One of the challenges of counterfactual explanation is the efficient generation of realistic counterfactuals. To address this challenge, we propose VCNet-Variational Counter Net-a model architecture that combines a predictor and a counterfactual generator that are jointly trained, for regression or classification tasks. VCNet is able to both generate predictions, and to generate counterfactual explanations without having to solve another minimisation problem. Our contribution is the generation of counterfactuals that are close to the distribution of the predicted class. This is done by learning a variational autoencoder conditionally to the output of the predictor in a join-training fashion. We present an empirical evaluation on tabular datasets and across several interpretability metrics. The results are competitive with the state-of-the-art method.
translated by 谷歌翻译