我们在本文中解决了广义类别发现(GCD)的问题,即从一组可见的类中利用信息的未标记的图像,其中未标记的图像可以包含可见的类和看不见的类。可以将所见类看作是类的隐式标准,这使得此设置不同于无监督的聚类,而集群标准可能模棱两可。我们主要关注在细粒数据集中发现类别的问题,因为它是类别发现的最直接应用程序之一,即帮助专家使用所见类规定的隐性标准在未标记的数据集中发现新颖概念。通用类别发现的最新方法杠杆对比度学习以学习表示形式,但是较大的类间相似性和阶层内差异对方法提出了挑战,因为负面示例可能包含无关的线索,以识别类别因此,算法可能会收敛到局部微米。我们提出了一种名为“专家对抗性学习(XCON)”的新颖方法,可以通过将数据集使用K-均值聚类将数据集划分为子数据库,然后对每个子数据集进行对比度学习,从而帮助模型从图像中挖掘有用的信息。学习细粒度的判别特征。在细粒度数据集上的实验表明,与以前的最佳方法相比,性能明显改善,表明我们方法的有效性。
translated by 谷歌翻译
在本文中,我们考虑一个高度通用的图像识别设置,其中,给定标记和未标记的图像集,任务是在未标记的集合中对所有图像进行分类。这里,未标记的图像可以来自标记的类或新颖的图像。现有的识别方法无法处理此设置,因为它们会产生几种限制性假设,例如仅来自已知或未知 - 类的未标记的实例以及已知的未知类的数量。我们解决了更加不受约束的环境,命名为“广义类别发现”,并挑战所有这些假设。我们首先通过从新型类别发现和适应这项任务的最先进的算法来建立强有力的基线。接下来,我们建议使用视觉变形金刚,为此开放的世界设置具有对比的代表学习。然后,我们介绍一个简单而有效的半监督$ k $ -means方法,将未标记的数据自动聚类,看不见的类,显着优于基线。最后,我们还提出了一种新的方法来估计未标记数据中的类别数。我们彻底评估了我们在公共数据集上的方法,包括Cifar10,CiFar100和Imagenet-100,以及包括幼崽,斯坦福汽车和植宝司19,包括幼崽,斯坦福汽车和Herbarium19,在这个新的环境中基准测试,以培养未来的研究。
translated by 谷歌翻译
We introduce an information-maximization approach for the Generalized Category Discovery (GCD) problem. Specifically, we explore a parametric family of loss functions evaluating the mutual information between the features and the labels, and find automatically the one that maximizes the predictive performances. Furthermore, we introduce the Elbow Maximum Centroid-Shift (EMaCS) technique, which estimates the number of classes in the unlabeled set. We report comprehensive experiments, which show that our mutual information-based approach (MIB) is both versatile and highly competitive under various GCD scenarios. The gap between the proposed approach and the existing methods is significant, more so when dealing with fine-grained classification problems. Our code: \url{https://github.com/fchiaroni/Mutual-Information-Based-GCD}.
translated by 谷歌翻译
视觉识别任务通常限于处理小型类的小型,因为剩余类别不可用。我们有兴趣通过基于标记和未标记的示例的表示学习来识别数据集中的新颖概念,并将识别的视野扩展到已知和新型类别。为了解决这一具有挑战性的任务,我们提出了一种组合学习方法,其自然地使用由异构标签空间上的多个监督元分类器给出的组成知识来委托未经组合的类别。组合嵌入给出的表示通过一致性正则化进行了更强大的。我们还介绍了公制学习策略,以估算成对伪标签,以改善未标记的例子的表示,其有效地保护了朝着所知和新型课程的语义关系。该算法通过联合优化提高了看不见的课程的歧视以及学习知名课程的表示,通过联合优化来发现新颖的概念,以便更广泛地提高到新颖的课程。我们广泛的实验通过多种图像检索和新型类发现基准中的提出方法表现出显着的性能。
translated by 谷歌翻译
我们解决了新颖的类发现问题,旨在根据可见类别的数据在未标记的数据中发现新的类。主要的挑战是将所见类中包含的知识转移到看不见的知识中。先前的方法主要通过共享表示空间或关节标签空间传输知识。但是,他们倾向于忽略可见类别和看不见的类别之间的阶级关系,因此学习的表示对聚类的看不见类别的有效性较差。在本文中,我们提出了一种原理和一般方法,以在可见的和看不见的阶级之间传递语义知识。我们的见解是利用共同的信息来衡量受限的标签空间中看到的类和看不见的类之间的关系,并最大化相互信息可以促进传递语义知识的传递。为了验证我们方法的有效性和概括,我们对新型类发现和一般新型类发现设置进行了广泛的实验。我们的结果表明,所提出的方法在几个基准上优于先前的SOTA。
translated by 谷歌翻译
在本文中,我们通过利用包含来自其他不同但相关类别的图像的标记数据集将来自新类的未标记的图像与新类别分组从新类别分组到不同的语义分区的问题。这是一个比传统的半监督学习更现实和具有挑战性的。我们为这个问题提出了一个双分支学习框架,一个分支专注于本地部分级信息和专注于整体特征的另一个分支。将知识从标记的数据传输到未标记的,我们建议使用两个分支机构的双重排名统计信息来生成伪标签,用于培训未标记的数据。我们进一步介绍了一个相互知识蒸馏方法,以允许信息交流并鼓励两个分支机构之间的协议,以发现新类别,允许我们的模型享受全球和当地特征的好处。我们全面评估了我们在通用对象分类的公共基准上的方法,以及用于细粒度的视觉识别的更具挑战性的数据集,实现最先进的性能。
translated by 谷歌翻译
在对比学习中,最近的进步表现出了出色的表现。但是,绝大多数方法仅限于封闭世界的环境。在本文中,我们通过挖掘开放世界的环境来丰富表示学习的景观,其中新颖阶级的未标记样本自然可以在野外出现。为了弥合差距,我们引入了一个新的学习框架,开放世界的对比学习(Opencon)。Opencon应对已知和新颖阶级学习紧凑的表现的挑战,并促进了一路上的新颖性发现。我们证明了Opencon在挑战基准数据集中的有效性并建立竞争性能。在Imagenet数据集上,Opencon在新颖和总体分类精度上分别胜过当前最佳方法的最佳方法,分别胜过11.9%和7.4%。我们希望我们的工作能为未来的工作打开新的大门,以解决这一重要问题。
translated by 谷歌翻译
Although existing semi-supervised learning models achieve remarkable success in learning with unannotated in-distribution data, they mostly fail to learn on unlabeled data sampled from novel semantic classes due to their closed-set assumption. In this work, we target a pragmatic but under-explored Generalized Novel Category Discovery (GNCD) setting. The GNCD setting aims to categorize unlabeled training data coming from known and novel classes by leveraging the information of partially labeled known classes. We propose a two-stage Contrastive Affinity Learning method with auxiliary visual Prompts, dubbed PromptCAL, to address this challenging problem. Our approach discovers reliable pairwise sample affinities to learn better semantic clustering of both known and novel classes for the class token and visual prompts. First, we propose a discriminative prompt regularization loss to reinforce semantic discriminativeness of prompt-adapted pre-trained vision transformer for refined affinity relationships. Besides, we propose a contrastive affinity learning stage to calibrate semantic representations based on our iterative semi-supervised affinity graph generation method for semantically-enhanced prompt supervision. Extensive experimental evaluation demonstrates that our PromptCAL method is more effective in discovering novel classes even with limited annotations and surpasses the current state-of-the-art on generic and fine-grained benchmarks (with nearly $11\%$ gain on CUB-200, and $9\%$ on ImageNet-100) on overall accuracy.
translated by 谷歌翻译
本文解决了新型类别发现(NCD)的问题,该问题旨在区分大规模图像集中的未知类别。 NCD任务由于与现实世界情景的亲密关系而具有挑战性,我们只遇到了一些部分类和图像。与NCD上的其他作品不同,我们利用原型强调类别歧视的重要性,并减轻缺少新颖阶级注释的问题。具体而言,我们提出了一种新型的适应性原型学习方法,该方法由两个主要阶段组成:原型表示学习和原型自我训练。在第一阶段,我们获得了一个可靠的特征提取器,该功能提取器可以为所有具有基础和新颖类别的图像提供。该功能提取器的实例和类别歧视能力通过自我监督的学习和适应性原型来提高。在第二阶段,我们再次利用原型来整理离线伪标签,并训练类别聚类的最终参数分类器。我们对四个基准数据集进行了广泛的实验,并证明了该方法具有最先进的性能的有效性和鲁棒性。
translated by 谷歌翻译
通过对比学习,自我监督学习最近在视觉任务中显示了巨大的潜力,这旨在在数据集中区分每个图像或实例。然而,这种情况级别学习忽略了实例之间的语义关系,有时不希望地从语义上类似的样本中排斥锚,被称为“假否定”。在这项工作中,我们表明,对于具有更多语义概念的大规模数据集来说,虚假否定的不利影响更为重要。为了解决这个问题,我们提出了一种新颖的自我监督的对比学习框架,逐步地检测并明确地去除假阴性样本。具体地,在训练过程之后,考虑到编码器逐渐提高,嵌入空间变得更加语义结构,我们的方法动态地检测增加的高质量假否定。接下来,我们讨论两种策略,以明确地在对比学习期间明确地消除检测到的假阴性。广泛的实验表明,我们的框架在有限的资源设置中的多个基准上表现出其他自我监督的对比学习方法。
translated by 谷歌翻译
从一个非常少数标记的样品中学习新颖的课程引起了机器学习区域的越来越高。最近关于基于元学习或转移学习的基于范例的研究表明,良好特征空间的获取信息可以是在几次拍摄任务上实现有利性能的有效解决方案。在本文中,我们提出了一种简单但有效的范式,该范式解耦了学习特征表示和分类器的任务,并且只能通过典型的传送学习培训策略从基类嵌入体系结构的特征。为了在每个类别内保持跨基地和新类别和辨别能力的泛化能力,我们提出了一种双路径特征学习方案,其有效地结合了与对比特征结构的结构相似性。以这种方式,内部级别对齐和级别的均匀性可以很好地平衡,并且导致性能提高。三个流行基准测试的实验表明,当与简单的基于原型的分类器结合起来时,我们的方法仍然可以在电感或转换推理设置中的标准和广义的几次射击问题达到有希望的结果。
translated by 谷歌翻译
我们提出了将粗大分类标签纳入细粒域中的图像分类器的技术。这种标签通常可以通过较小的努力来获得较小的粒状域,例如根据生物分类法组织类别的自然界。在三个王国组成的半inat数据集上,包括Phylum标签,在使用ImageNet预训练模型的转移学习设置中将物种级别分类精度提高了6%。使用称为FixMatch的最先进的半监督学习算法的分层标签结构提高了1.3%的性能。当提供诸如类或订单的详细标签或从头开始培训时,相对收益更大。但是,我们发现大多数方法对来自新类别的域名数据的存在并不强大。我们提出了一种技术来从层次结构引导的大量未标记图像中选择相关数据,这提高了鲁棒性。总体而言,我们的实验表明,具有粗大分类标签的半监督学习对于细粒度域中的培训分类器是实用的。
translated by 谷歌翻译
卷积神经网络(CNN)通过使用大型数据集在图像分类方面取得了重大成功。但是,在小规模数据集上从头开始学习,有效地有效地学习,这仍然是巨大的挑战。借助有限的培训数据集,类别的概念将是模棱两可的,因为过度参数化的CNN倾向于简单地记住数据集,从而导致概括能力差。因此,研究如何在避免过度拟合的同时学习更多的判别性表示至关重要。由于类别的概念往往是模棱两可的,因此获取更多个人信息很重要。因此,我们提出了一个新框架,称为“吸引和修复”,由对比度正规化(CR)组成以丰富特征表示形式,对称交叉熵(SCE),以平衡不同类别的拟合和平均教师以校准标签信息。具体而言,SCE和CR学习歧视性表示,同时通过班级信息(吸引)和实例(拒绝)之间的适应性权衡缓解过度构成。之后,平均教师通过校准更准确的软伪标签来进一步提高性能。足够的实验验证了吸引和修复框架的有效性。加上其他策略,例如积极的数据增强,tencrop推断和模型结合,我们在ICCV 2021 vipriors图像分类挑战中获得了第二名。
translated by 谷歌翻译
尽管已显示自我监督的学习受益于许多视觉任务,但现有技术主要集中在图像级操作上,这可能无法很好地概括为补丁或像素级别的下游任务。此外,现有的SSL方法可能无法充分描述和关联图像量表内和跨图像量表的上述表示。在本文中,我们提出了一个自制的金字塔表示学习(SS-PRL)框架。所提出的SS-PRL旨在通过学习适当的原型在斑块级别得出金字塔表示,并在图像中观察和关联固有的语义信息。特别是,我们在SS-PRL中提出了跨尺度贴片级的相关性学习,该学习允许模型汇总和关联信息跨贴片量表。我们表明,借助我们提出的用于模型预训练的SS-PRL,可以轻松适应和调整模型,以适应各种应用程序,包括多标签分类,对象检测和实例分割。
translated by 谷歌翻译
This paper presents Prototypical Contrastive Learning (PCL), an unsupervised representation learning method that bridges contrastive learning with clustering. PCL not only learns low-level features for the task of instance discrimination, but more importantly, it encodes semantic structures discovered by clustering into the learned embedding space. Specifically, we introduce prototypes as latent variables to help find the maximum-likelihood estimation of the network parameters in an Expectation-Maximization framework. We iteratively perform E-step as finding the distribution of prototypes via clustering and M-step as optimizing the network via contrastive learning. We propose ProtoNCE loss, a generalized version of the InfoNCE loss for contrastive learning, which encourages representations to be closer to their assigned prototypes. PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks with substantial improvement in low-resource transfer learning. Code and pretrained models are available at https://github.com/salesforce/PCL.
translated by 谷歌翻译
我们研究了用于半监控学习(SSL)的无监督数据选择,其中可以提供大规模的未标记数据集,并且为标签采集预算小额数据子集。现有的SSL方法专注于学习一个有效地集成了来自给定小标记数据和大型未标记数据的信息的模型,而我们专注于选择正确的数据以用于SSL的注释,而无需任何标签或任务信息。直观地,要标记的实例应统称为下游任务的最大多样性和覆盖范围,并且单独具有用于SSL的最大信息传播实用程序。我们以三步数据为中心的SSL方法形式化这些概念,使稳定性和精度的纤维液改善8%的CiFar-10(标记为0.08%)和14%的Imagenet -1k(标记为0.2%)。它也是一种具有各种SSL方法的通用框架,提供一致的性能增益。我们的工作表明,在仔细选择注释数据上花费的小计算带来了大注释效率和模型性能增益,而无需改变学习管道。我们完全无监督的数据选择可以轻松扩展到其他弱监督的学习设置。
translated by 谷歌翻译
深层网络的监督表示学习倾向于过度培养培训课程,而对新课程的概括是一个具有挑战性的问题。经常评估在同一培训课程的固定图像上学习的嵌入。但是,在实际应用中,数据来自新来源,新颖的类可能会出现。我们假设将新颖类的未标记图像以半监督的方式纳入训练,这将有助于与香草监督的表述相比,有效地检索新颖级别的图像。为了以一种综合的方式验证这一假设,我们提出了一种原始的评估方法,该方法可以通过随机或语义上的数据集类别进行分区,即通过对基础和新颖类之间的共享语义进行最小化,从而改变了新颖类的新颖性程度。该评估程序允许盲目训练一台新型级标签,并评估基础或新型阶级检索的冷冻表示。我们发现,香草的监督表现不足,因此在新颖阶级的检索中差不多,因此当语义差距更高时。半监督算法可以部分弥合这一性能差距,但仍然有很大的改进空间。
translated by 谷歌翻译
旨在识别来自子类别的对象的细粒度视觉分类(FGVC)是一个非常具有挑战性的任务,因为固有的微妙级别差异。大多数现有工程主要通过重用骨干网络来提取检测到的歧视区域的特征来解决这个问题。然而,该策略不可避免地使管道复杂化并推动所提出的区域,其中大多数物体的大多数部分未能定位真正重要的部分。最近,视觉变压器(VIT)在传统的分类任务中表现出其强大的表现。变压器的自我关注机制将每个补丁令牌链接到分类令牌。在这项工作中,我们首先评估vit框架在细粒度识别环境中的有效性。然后,由于注意力的强度,可以直观地被认为是令牌重要性的指标,我们进一步提出了一种新颖的部分选择模块,可以应用于我们整合变压器的所有原始注意力的变压器架构进入注意地图,用于指导网络以有效,准确地选择鉴别的图像斑块并计算它们的关系。应用对比损失来扩大混淆类的特征表示之间的距离。我们将基于增强的变压器的模型Transfg命名,并通过在我们实现最先进的绩效的五个流行的细粒度基准测试中进行实验来展示它的价值。提出了更好地理解模型的定性结果。
translated by 谷歌翻译
基于伪标签的半监督学习(SSL)在原始数据利用率上取得了巨大的成功。但是,由于自我生成的人工标签中包含的噪声,其训练程序受到确认偏差的影响。此外,该模型的判断在具有广泛分布数据的现实应用程序中变得更加嘈杂。为了解决这个问题,我们提出了一种名为“班级意识的对比度半监督学习”(CCSSL)的通用方法,该方法是提高伪标签质量并增强现实环境中模型的稳健性的插手。我们的方法不是将现实世界数据视为一个联合集合,而是分别处理可靠的分布数据,并将其融合到下游任务中,并将其与图像对比度融合到下游任务中,以更好地泛化。此外,通过应用目标重新加权,我们成功地强调了清洁标签学习,并同时减少嘈杂的标签学习。尽管它很简单,但我们提出的CCSSL比标准数据集CIFAR100和STL10上的最新SSL方法具有显着的性能改进。在现实世界数据集Semi-Inat 2021上,我们将FixMatch提高了9.80%,并提高了3.18%。代码可用https://github.com/tencentyouturesearch/classification-spoomls。
translated by 谷歌翻译
半监督学习(SSL)是规避建立高性能模型的昂贵标签成本的最有前途的范例之一。大多数现有的SSL方法常规假定标记和未标记的数据是从相同(类)分布中绘制的。但是,在实践中,未标记的数据可能包括课外样本;那些不能从标签数据中的封闭类中的单热编码标签,即未标记的数据是开放设置。在本文中,我们介绍了Opencos,这是一种基于最新的自我监督视觉表示学习框架来处理这种现实的半监督学习方案。具体而言,我们首先观察到,可以通过自我监督的对比度学习有效地识别开放式未标记数据集中的类外样本。然后,Opencos利用此信息来克服现有的最新半监督方法中的故障模式,通过利用一式旋转伪标签和软标签来为已识别的识别和外部未标记的标签数据分别。我们广泛的实验结果表明了Opencos的有效性,可以修复最新的半监督方法,适合涉及开放式无标记数据的各种情况。
translated by 谷歌翻译