一般照明条件中单眼图像的强大面部重建是具有挑战性的。用于使用微弱渲染的深度神经网络编码器结合的方法打开了几何,照明和反射的非常快速的单眼重建的路径。它们也可以通过自我监督的方式培训,以增加鲁棒性和更好的泛化。然而,基于光栅化的图像形成模型以及底层场景参数化,将它们限制在Lambertian的反射率和差的形状细节中。最近,在基于经典优化的框架内引入了用于单眼脸部重建的射线跟踪,并实现最先进的结果。然而,基于优化的方法本质上很慢,缺乏鲁棒性。在本文中,我们在上述方法上建立了我们的工作,并提出了一种新的方法,大大提高了一般场景中的重建质量和鲁棒性。我们通过将CNN编码器与可分散的射线示踪剂组合来实现这一点,这使得我们能够将重建基于更高级的个性化漫射和镜面,更复杂的照明模型和自阴影的合理表示。这使得即使在难以照明的场景中,也可以在重建的形状,外观和照明中进行大跃进。通过一致的面部属性重建,我们的方法导致实际应用,例如致密和自阴影去除。与最先进的方法相比,我们的结果表明了提高了方法的准确性和有效性。
translated by 谷歌翻译
We present HARP (HAnd Reconstruction and Personalization), a personalized hand avatar creation approach that takes a short monocular RGB video of a human hand as input and reconstructs a faithful hand avatar exhibiting a high-fidelity appearance and geometry. In contrast to the major trend of neural implicit representations, HARP models a hand with a mesh-based parametric hand model, a vertex displacement map, a normal map, and an albedo without any neural components. As validated by our experiments, the explicit nature of our representation enables a truly scalable, robust, and efficient approach to hand avatar creation. HARP is optimized via gradient descent from a short sequence captured by a hand-held mobile phone and can be directly used in AR/VR applications with real-time rendering capability. To enable this, we carefully design and implement a shadow-aware differentiable rendering scheme that is robust to high degree articulations and self-shadowing regularly present in hand motion sequences, as well as challenging lighting conditions. It also generalizes to unseen poses and novel viewpoints, producing photo-realistic renderings of hand animations performing highly-articulated motions. Furthermore, the learned HARP representation can be used for improving 3D hand pose estimation quality in challenging viewpoints. The key advantages of HARP are validated by the in-depth analyses on appearance reconstruction, novel-view and novel pose synthesis, and 3D hand pose refinement. It is an AR/VR-ready personalized hand representation that shows superior fidelity and scalability.
translated by 谷歌翻译
在过去几年中,许多面部分析任务已经完成了惊人的性能,其中应用包括来自单个“野外”图像的面部生成和3D面重建。尽管如此,据我们所知,没有方法可以从“野外”图像中产生渲染的高分辨率3D面,并且这可以归因于:(a)可用数据的跨度进行培训(b)缺乏可以成功应用于非常高分辨率数据的强大方法。在这项工作中,我们介绍了一种能够从单个“野外”图像中重建光电型渲染3D面部几何和BRDF的第一种方法。我们捕获了一个大型的面部形状和反射率,我们已经公开了。我们用精确的面部皮肤漫射和镜面反射,自遮挡和地下散射近似来定义快速面部光电型拟型渲染方法。有了这一点,我们训练一个网络,将面部漫射和镜面BRDF组件与烘焙照明的形状和质地一起脱颖而出,以最先进的3DMM配件方法重建。我们的方法通过显着的余量优于现有技术,并从单个低分辨率图像重建高分辨率3D面,这可以在各种应用中呈现,并桥接不一体谷。
translated by 谷歌翻译
从单个图像重建高保真3D面部纹理是一个具有挑战性的任务,因为缺乏完整的面部信息和3D面和2D图像之间的域间隙。最新作品通过应用基于代或基于重建的方法来解决面部纹理重建问题。尽管各种方法具有自身的优势,但它们不能恢复高保真和可重新可传送的面部纹理,其中术语“重新可调剂”要求面部质地在空间地完成和与环境照明中脱颖而出。在本文中,我们提出了一种新颖的自我监督学习框架,用于从野外的单视图重建高质量的3D面。我们的主要思想是首先利用先前的一代模块来生产先前的Albedo,然后利用细节细化模块来获得详细的Albedo。为了进一步使面部纹理解开照明,我们提出了一种新颖的详细的照明表示,该表现在一起与详细的Albedo一起重建。我们还在反照侧和照明方面设计了几种正规化损失功能,以便于解散这两个因素。最后,由于可怜的渲染技术,我们的神经网络可以以自我监督的方式有效地培训。关于具有挑战性的数据集的广泛实验表明,我们的框架在定性和定量比较方面显着优于最先进的方法。
translated by 谷歌翻译
We introduce Structured 3D Features, a model based on a novel implicit 3D representation that pools pixel-aligned image features onto dense 3D points sampled from a parametric, statistical human mesh surface. The 3D points have associated semantics and can move freely in 3D space. This allows for optimal coverage of the person of interest, beyond just the body shape, which in turn, additionally helps modeling accessories, hair, and loose clothing. Owing to this, we present a complete 3D transformer-based attention framework which, given a single image of a person in an unconstrained pose, generates an animatable 3D reconstruction with albedo and illumination decomposition, as a result of a single end-to-end model, trained semi-supervised, and with no additional postprocessing. We show that our S3F model surpasses the previous state-of-the-art on various tasks, including monocular 3D reconstruction, as well as albedo and shading estimation. Moreover, we show that the proposed methodology allows novel view synthesis, relighting, and re-posing the reconstruction, and can naturally be extended to handle multiple input images (e.g. different views of a person, or the same view, in different poses, in video). Finally, we demonstrate the editing capabilities of our model for 3D virtual try-on applications.
translated by 谷歌翻译
3D面部重建是一个具有挑战性的问题,但也是计算机视觉和图形领域的重要任务。最近,许多研究人员对这个问题提请注意,并且已经发表了大量的文章。单个图像重建是3D面部重建的分支之一,在我们的生活中具有大量应用。本文是对从单个图像的3D面部重建最近的文献述评。
translated by 谷歌翻译
传统上,本征成像或内在图像分解被描述为将图像分解为两层:反射率,材料的反射率;和一个阴影,由光和几何之间的相互作用产生。近年来,深入学习技术已广泛应用,以提高这些分离的准确性。在本调查中,我们概述了那些在知名内在图像数据集和文献中使用的相关度量的结果,讨论了预测所需的内在图像分解的适用性。虽然Lambertian的假设仍然是许多方法的基础,但我们表明,对图像形成过程更复杂的物理原理组件的潜力越来越意识到,这是光学准确的材料模型和几何形状,更完整的逆轻型运输估计。考虑使用的前瞻和模型以及驾驶分解过程的学习架构和方法,我们将这些方法分类为分解的类型。考虑到最近神经,逆和可微分的渲染技术的进步,我们还提供了关于未来研究方向的见解。
translated by 谷歌翻译
从单个图像中恢复人头的几何形状,同时对材料和照明进行分解是一个严重不良的问题,需要事先解决。基于3D形态模型(3DMM)及其与可区分渲染器的组合的方法已显示出令人鼓舞的结果。但是,3DMM的表现力受到限制,它们通常会产生过度平滑和身份敏捷的3D形状,仅限于面部区域。最近,使用多层感知器参数化几何形状的神经场获得了高度准确的全头部重建。这些表示形式的多功能性也已被证明可有效解开几何形状,材料和照明。但是,这些方法需要几十个输入图像。在本文中,我们介绍了Sira,该方法从单个图像中,从一个图像中重建了具有高保真度几何形状和分解的灯光和表面材料的人头头像。我们的关键成分是基于神经场的两个数据驱动的统计模型,这些模型可以解决单视3D表面重建和外观分解的歧义。实验表明,Sira获得了最新的状态导致3D头重建,同时它成功地解开了全局照明以及弥漫性和镜面反照率。此外,我们的重建适合基于物理的外观编辑和头部模型重新构建。
translated by 谷歌翻译
我们提出了神经头头像,这是一种新型神经表示,其明确地模拟了可动画的人体化身的表面几何形状和外观,可用于在依赖数字人类的电影或游戏行业中的AR / VR或其他应用中的电话会议。我们的代表可以从单眼RGB肖像视频中学到,该视频具有一系列不同的表达和视图。具体地,我们提出了一种混合表示,其由面部的粗糙形状和表达式和两个前馈网络组成的混合表示,以及预测底层网格的顶点偏移以及视图和表达依赖性纹理。我们证明,该表示能够准确地外推到看不见的姿势和观点,并在提供尖锐的纹理细节的同时产生自然表达。与先前的磁头头像上的作品相比,我们的方法提供了与标准图形管道兼容的完整人体头(包括头发)的分解形状和外观模型。此外,就重建质量和新型观看合成而定量和定性地优于现有技术的当前状态。
translated by 谷歌翻译
We propose a novel method for high-quality facial texture reconstruction from RGB images using a novel capturing routine based on a single smartphone which we equip with an inexpensive polarization foil. Specifically, we turn the flashlight into a polarized light source and add a polarization filter on top of the camera. Leveraging this setup, we capture the face of a subject with cross-polarized and parallel-polarized light. For each subject, we record two short sequences in a dark environment under flash illumination with different light polarization using the modified smartphone. Based on these observations, we reconstruct an explicit surface mesh of the face using structure from motion. We then exploit the camera and light co-location within a differentiable renderer to optimize the facial textures using an analysis-by-synthesis approach. Our method optimizes for high-resolution normal textures, diffuse albedo, and specular albedo using a coarse-to-fine optimization scheme. We show that the optimized textures can be used in a standard rendering pipeline to synthesize high-quality photo-realistic 3D digital humans in novel environments.
translated by 谷歌翻译
我们介绍了一个现实的单发网眼的人体头像创作的系统,即简称罗马。使用一张照片,我们的模型估计了特定于人的头部网格和相关的神经纹理,该神经纹理编码局部光度和几何细节。最终的化身是操纵的,可以使用神经网络进行渲染,该神经网络与野外视频数据集上的网格和纹理估计器一起训练。在实验中,我们观察到我们的系统在头部几何恢复和渲染质量方面都具有竞争性的性能,尤其是对于跨人的重新制定。请参阅结果https://samsunglabs.github.io/rome/
translated by 谷歌翻译
我们提出了Boareskinnet,这是一种新颖的方法,可以同时去除面部图像的化妆和照明影响。我们的方法利用3D形态模型,不需要参考干净的面部图像或指定的光条件。通过结合3D面重建的过程,我们可以轻松获得3D几何和粗3D纹理。使用此信息,我们可以通过图像翻译网络推断出归一化的3D面纹理图(扩散,正常,粗糙和镜面)。因此,没有不良信息的重建3D面部纹理将显着受益于随后的过程,例如重新照明或重新制作。在实验中,我们表明Bareskinnet优于最先进的化妆方法。此外,我们的方法有助于卸妆以生成一致的高保真纹理图,这使其可扩展到许多现实的面部生成应用。它还可以在相应的3D数据之前和之后自动构建面部化妆图像的图形资产。这将有助于艺术家加速他们的作品,例如3D Makeup Avatar创作。
translated by 谷歌翻译
综合照片 - 现实图像和视频是计算机图形的核心,并且是几十年的研究焦点。传统上,使用渲染算法(如光栅化或射线跟踪)生成场景的合成图像,其将几何形状和材料属性的表示为输入。统称,这些输入定义了实际场景和呈现的内容,并且被称为场景表示(其中场景由一个或多个对象组成)。示例场景表示是具有附带纹理的三角形网格(例如,由艺术家创建),点云(例如,来自深度传感器),体积网格(例如,来自CT扫描)或隐式曲面函数(例如,截短的符号距离)字段)。使用可分辨率渲染损耗的观察结果的这种场景表示的重建被称为逆图形或反向渲染。神经渲染密切相关,并将思想与经典计算机图形和机器学习中的思想相结合,以创建用于合成来自真实观察图像的图像的算法。神经渲染是朝向合成照片现实图像和视频内容的目标的跨越。近年来,我们通过数百个出版物显示了这一领域的巨大进展,这些出版物显示了将被动组件注入渲染管道的不同方式。这种最先进的神经渲染进步的报告侧重于将经典渲染原则与学习的3D场景表示结合的方法,通常现在被称为神经场景表示。这些方法的一个关键优势在于它们是通过设计的3D-一致,使诸如新颖的视点合成捕获场景的应用。除了处理静态场景的方法外,我们还涵盖了用于建模非刚性变形对象的神经场景表示...
translated by 谷歌翻译
我们提出了一种有效的方法,用于从多视图图像观察中联合优化拓扑,材料和照明。与最近的多视图重建方法不同,通常在神经网络中产生纠缠的3D表示,我们将三角形网格输出具有空间不同的材料和环境照明,这些方法可以在任何传统的图形引擎中未修改。我们利用近期工作在可差异化的渲染中,基于坐标的网络紧凑地代表体积纹理,以及可微分的游行四边形,以便直接在表面网上直接实现基于梯度的优化。最后,我们介绍了环境照明的分流和近似的可分辨率配方,以有效地回收全频照明。实验表明我们的提取模型用于高级场景编辑,材料分解和高质量的视图插值,全部以三角形的渲染器(光栅化器和路径示踪剂)的交互式速率运行。
translated by 谷歌翻译
虚拟面部化身将在身临其境的沟通,游戏和元视频中发挥越来越重要的作用,因此至关重要的是包容性。这需要准确地恢复出现,无论年龄,性别或种族如何,都以反照率表示。尽管在估计3D面部几何形状方面取得了重大进展,但反照率估计受到较少的关注。该任务在根本上是模棱两可的,因为观察到的颜色是反照率和照明的函数,这两者都是未知的。我们发现,由于(1)偏爱较轻的色素沉着和(2)算法溶液,因此当前的方法偏向浅色肤色,而无视光/反照率的歧义。为了解决这个问题,我们提出了一个新的评估数据集(公平)和算法(Trust),以改善反照率估计以及公平性。具体而言,我们创建了第一个面部反照率评估基准,其中受试者在肤色方面保持平衡,并使用单个类型学角度(ITA)度量测量精度。然后,我们通过建立关键观察结果来解决光/反照率的歧义:与面部的裁剪图像相反,整个场景的图像包含有关照明的重要信息,可用于歧义。信任通过在面部区域和从场景图像中获得的全球照明信号进行调节来回归面部反照率。我们的实验结果表明,就准确性和公平性而言,与最先进的反照率估计方法相比,相比之下。评估基准和代码将用于研究目的,网址为https://trust.is.tue.mpg.de。
translated by 谷歌翻译
在本文中,我们提出了一个大型详细的3D面部数据集,FACESCAPE和相应的基准,以评估单视图面部3D重建。通过对FACESCAPE数据进行训练,提出了一种新的算法来预测从单个图像输入的精心索引3D面模型。 FACESCAPE DataSet提供18,760个纹理的3D面,从938个科目捕获,每个纹理和每个特定表达式。 3D模型包含孔径级面部几何形状,也被处理为拓扑均匀化。这些精细的3D面部模型可以表示为用于详细几何的粗糙形状和位移图的3D可线模型。利用大规模和高精度的数据集,进一步提出了一种使用深神经网络学习特定于表达式动态细节的新颖算法。学习的关系是从单个图像输入的3D面预测系统的基础。与以前的方法不同,我们的预测3D模型在不同表达式下具有高度详细的几何形状。我们还使用FACESCAPE数据来生成野外和实验室内基准,以评估最近的单视面重建方法。报告并分析了相机姿势和焦距的尺寸,并提供了忠诚和综合评估,并揭示了新的挑战。前所未有的数据集,基准和代码已被释放到公众以进行研究目的。
translated by 谷歌翻译
与仅对面部进行建模的早期方法相比,最近的3D面部重建方法重建了整个头部。尽管这些方法准确地重建了面部特征,但它们并未明确调节头部的上部。由于头发的闭塞程度不同,提取有关头部这一部分的信息具有挑战性。我们提出了一种新颖的方法,可以通过去除遮挡头发并重建皮肤,从而揭示有关头部形状的信息来建模上头。我们介绍了三个目标:1)骰子一致性损失,该骰子一致性损失在源的整体形状和渲染图像之间强制相似,2)刻度一致性损失,以确保即使头部的上部不是头部,也可以准确地复制头部形状可见,3)使用移动平均损耗功能训练的71个地标探测器,以检测头部的其他地标。这些目标用于以无监督的方式训练编码器,以从野外输入图像中回归火焰参数。我们无监督的3MM模型可在流行的基准上实现最新的结果,可用于推断动画或阿凡达创建中直接使用的头部形状,面部特征和纹理。
translated by 谷歌翻译
Recently, deep learning based 3D face reconstruction methods have shown promising results in both quality and efficiency. However, training deep neural networks typically requires a large volume of data, whereas face images with ground-truth 3D face shapes are scarce. In this paper, we propose a novel deep 3D face reconstruction approach that 1) leverages a robust, hybrid loss function for weakly-supervised learning which takes into account both low-level and perception-level information for supervision, and 2) performs multi-image face reconstruction by exploiting complementary information from different images for shape aggregation. Our method is fast, accurate, and robust to occlusion and large pose. We provide comprehensive experiments on three datasets, systematically comparing our method with fifteen recent methods and demonstrating its state-of-the-art performance. Code available at https://github.com/ Microsoft/Deep3DFaceReconstruction
translated by 谷歌翻译
我们提出了一种参数模型,将自由视图图像映射到编码面部形状,表达和外观的矢量空间,即使用神经辐射场,即可变的面部nerf。具体地,MoFanerf将编码的面部形状,表达和外观以及空间坐标和视图方向作为输入,作为输入到MLP,并输出光学逼真图像合成的空间点的辐射。与传统的3D可变模型(3DMM)相比,MoFanerf在直接综合光学逼真的面部细节方面表现出优势,即使是眼睛,嘴巴和胡须也是如此。而且,通过插入输入形状,表达和外观码,可以容易地实现连续的面部。通过引入特定于特定于特定的调制和纹理编码器,我们的模型合成精确的光度测量细节并显示出强的表示能力。我们的模型显示了多种应用的强大能力,包括基于图像的拟合,随机产生,面部索具,面部编辑和新颖的视图合成。实验表明,我们的方法比以前的参数模型实现更高的表示能力,并在几种应用中实现了竞争性能。据我们所知,我们的作品是基于神经辐射场上的第一款,可用于配合,发电和操作。我们的代码和型号在https://github.com/zhuhao-nju/mofanerf中发布。
translated by 谷歌翻译
InputOutput Input Output Fig. 1. Unlike current face reenactment approaches that only modify the expression of a target actor in a video, our novel deep video portrait approach enables full control over the target by transferring the rigid head pose, facial expression and eye motion with a high level of photorealism.We present a novel approach that enables photo-realistic re-animation of portrait videos using only an input video. In contrast to existing approaches that are restricted to manipulations of facial expressions only, we are the irst to transfer the full 3D head position, head rotation, face expression, eye gaze, and eye blinking from a source actor to a portrait video of a target actor. The core of our approach is a generative neural network with a novel space-time architecture. The network takes as input synthetic renderings of a parametric face model, based on which it predicts photo-realistic video frames for a given target actor. The realism in this rendering-to-video transfer is achieved by careful adversarial training, and as a result, we can create modiied target videos that mimic the behavior of the synthetically-created input. In order to enable source-to-target video re-animation, we render a synthetic target video with the reconstructed head animation parameters from a source video, and feed it into the trained network ś thus taking full control of the
translated by 谷歌翻译