银阳数据集是为尖峰神经网络进行生物学卓越的误差反向和深度学习的研究开发的。它用作经典深度学习数据集的替代方案,特别是在网络模型和硬件平台的早期原型设计方案中,它提供了多种优点。首先,学习更少,因此更快地学习,从而更适合在软件模拟和硬件原型中的小规模探索性研究。其次,与深神经网络相比,使用浅层可实现的精度之间表现出非常明显的差距。第三,它很容易在空间和时间输入域之间传输,这使得不同类型的分类方案有趣。
translated by 谷歌翻译
Event-based simulations of Spiking Neural Networks (SNNs) are fast and accurate. However, they are rarely used in the context of event-based gradient descent because their implementations on GPUs are difficult. Discretization with the forward Euler method is instead often used with gradient descent techniques but has the disadvantage of being computationally expensive. Moreover, the lack of precision of discretized simulations can create mismatches between the simulated models and analog neuromorphic hardware. In this work, we propose a new exact error-backpropagation through spikes method for SNNs, extending Fast \& Deep to multiple spikes per neuron. We show that our method can be efficiently implemented on GPUs in a fully event-based manner, making it fast to compute and precise enough for analog neuromorphic hardware. Compared to the original Fast \& Deep and the current state-of-the-art event-based gradient-descent algorithms, we demonstrate increased performance on several benchmark datasets with both feedforward and convolutional SNNs. In particular, we show that multi-spike SNNs can have advantages over single-spike networks in terms of convergence, sparsity, classification latency and sensitivity to the dead neuron problem.
translated by 谷歌翻译
尖峰神经网络(SNN)是大脑中低功率,耐断层的信息处理的基础,并且在适当的神经形态硬件加速器上实施时,可能构成传统深层神经网络的能力替代品。但是,实例化解决复杂的计算任务的SNN在Silico中仍然是一个重大挑战。替代梯度(SG)技术已成为培训SNN端到端的标准解决方案。尽管如此,它们的成功取决于突触重量初始化,类似于常规的人工神经网络(ANN)。然而,与ANN不同,它仍然难以捉摸地构成SNN的良好初始状态。在这里,我们为受到大脑中通常观察到的波动驱动的策略启发的SNN制定了一般初始化策略。具体而言,我们为数据依赖性权重初始化提供了实用的解决方案,以确保广泛使用的泄漏的集成和传火(LIF)神经元的波动驱动。我们从经验上表明,经过SGS培训时,SNN遵循我们的策略表现出卓越的学习表现。这些发现概括了几个数据集和SNN体系结构,包括完全连接,深度卷积,经常性和更具生物学上合理的SNN遵守Dale的定律。因此,波动驱动的初始化提供了一种实用,多功能且易于实现的策略,可改善神经形态工程和计算神经科学的不同任务的SNN培训绩效。
translated by 谷歌翻译
Spiking neural networks (SNN) are a viable alternative to conventional artificial neural networks when energy efficiency and computational complexity are of importance. A major advantage of SNNs is their binary information transfer through spike trains. The training of SNN has, however, been a challenge, since neuron models are non-differentiable and traditional gradient-based backpropagation algorithms cannot be applied directly. Furthermore, spike-timing-dependent plasticity (STDP), albeit being a spike-based learning rule, updates weights locally and does not optimize for the output error of the network. We present desire backpropagation, a method to derive the desired spike activity of neurons from the output error. The loss function can then be evaluated locally for every neuron. Incorporating the desire values into the STDP weight update leads to global error minimization and increasing classification accuracy. At the same time, the neuron dynamics and computational efficiency of STDP are maintained, making it a spike-based supervised learning rule. We trained three-layer networks to classify MNIST and Fashion-MNIST images and reached an accuracy of 98.41% and 87.56%, respectively. Furthermore, we show that desire backpropagation is computationally less complex than backpropagation in traditional neural networks.
translated by 谷歌翻译
由于它们的低能量消耗,对神经形态计算设备上的尖刺神经网络(SNNS)越来越兴趣。最近的进展使培训SNNS在精度方面开始与传统人工神经网络(ANNS)进行竞争,同时在神经胸壁上运行时的节能。然而,培训SNNS的过程仍然基于最初为ANNS开发的密集的张量操作,这不利用SNN的时空稀疏性质。我们在这里介绍第一稀疏SNN BackPropagation算法,该算法与最新的现有技术实现相同或更好的准确性,同时显着更快,更高的记忆力。我们展示了我们对不同复杂性(时尚 - MNIST,神经影像学 - MNIST和Spiking Heidelberg数字的真实数据集的有效性,在不失精度的情况下实现了高达150倍的后向通行证的加速,而不会减少精度。
translated by 谷歌翻译
尖峰神经网络(SNN)已成为用于分类任务的硬件有效体系结构。基于尖峰的编码的惩罚是缺乏完全使用尖峰执行的通用训练机制。已经进行了几项尝试,用于采用在非加速人工神经网络(ANN)中使用的强大反向传播(BP)技术:(1)SNN可以通过外部计算的数值梯度来训练。 (2)基于天然尖峰的学习的主要进步是使用具有分阶段的前向/向后传递的尖峰时间依赖性可塑性(STDP)的近似反向传播。但是,在此类阶段之间的信息传输需要外部内存和计算访问。这是神经形态硬件实现的挑战。在本文中,我们提出了一种基于随机SNN的后式Prop(SSNN-BP)算法,该算法利用复合神经元同时计算前向通行激活,并用尖峰明确计算前向传递梯度。尽管签名的梯度值是基于SPIKE的表示的挑战,但我们通过将梯度信号分为正和负流来解决这一问题。复合神经元以随机尖峰传播的形式编码信息,并将反向传播的权重更新转换为时间和空间上局部离散的STDP类似STDP的Spike Concike更新,使其与硬件友好的电阻式处理单元(RPU)兼容。此外,我们的方法使用足够长的尖峰训练来接近BP ANN基线。最后,我们表明,可以通过强制执行胜利者的抑制性横向连接来实现软磁体交叉渗透损失函数。我们的SNN通过与MNIST,时尚和扩展的MNIST数据集的ANN相当的性能来表现出极好的概括。因此,SSNN-BP可以使BP与纯粹基于尖峰的神经形态硬件兼容。
translated by 谷歌翻译
我们最近提出了S4NN算法,基本上是对多层尖峰神经网络的反向化的适应,该网上网络使用简单的非泄漏整合和火神经元和一种形式称为第一峰值编码的时间编码。通过这种编码方案,每次刺激最多一次都是神经元火灾,但射击令携带信息。这里,我们引入BS4NN,S4NN的修改,其中突触权重被约束为二进制(+1或-1),以便减少存储器(理想情况下,每个突触的一个比特)和计算占地面积。这是使用两组权重完成:首先,通过梯度下降更新的实际重量,并在BackProjagation的后退通行证中使用,其次是在前向传递中使用的迹象。类似的策略已被用于培训(非尖峰)二值化神经网络。主要区别在于BS4NN在时域中操作:尖峰依次繁殖,并且不同的神经元可以在不同时间达到它们的阈值,这增加了计算能力。我们验证了两个流行的基准,Mnist和Fashion-Mnist上的BS4NN,并获得了这种网络的合理精度(分别为97.0%和87.3%),具有可忽略的准确率,具有可忽略的重量率(0.4%和0.7%,分别)。我们还展示了BS4NN优于具有相同架构的简单BNN,在这两个数据集上(分别为0.2%和0.9%),可能是因为它利用时间尺寸。建议的BS4NN的源代码在HTTPS://github.com/srkh/bs4nn上公开可用。
translated by 谷歌翻译
We propose a novel backpropagation algorithm for training spiking neural networks (SNNs) that encodes information in the relative multiple spike timing of individual neurons without single-spike restrictions. The proposed algorithm inherits the advantages of conventional timing-based methods in that it computes accurate gradients with respect to spike timing, which promotes ideal temporal coding. Unlike conventional methods where each neuron fires at most once, the proposed algorithm allows each neuron to fire multiple times. This extension naturally improves the computational capacity of SNNs. Our SNN model outperformed comparable SNN models and achieved as high accuracy as non-convolutional artificial neural networks. The spike count property of our networks was altered depending on the time constant of the postsynaptic current and the membrane potential. Moreover, we found that there existed the optimal time constant with the maximum test accuracy. That was not seen in conventional SNNs with single-spike restrictions on time-to-fast-spike (TTFS) coding. This result demonstrates the computational properties of SNNs that biologically encode information into the multi-spike timing of individual neurons. Our code would be publicly available.
translated by 谷歌翻译
最近的研究表明,卷积神经网络(CNNS)不是图像分类的唯一可行的解决方案。此外,CNN中使用的重量共享和反向验证不对应于预测灵长类动物视觉系统中存在的机制。为了提出更加生物合理的解决方案,我们设计了使用峰值定时依赖性塑性(STDP)和其奖励调制变体(R-STDP)学习规则训练的本地连接的尖峰神经网络(SNN)。使用尖刺神经元和局部连接以及强化学习(RL)将我们带到了所提出的架构中的命名法生物网络。我们的网络由速率编码的输入层组成,后跟局部连接的隐藏层和解码输出层。采用尖峰群体的投票方案进行解码。我们使用Mnist DataSet获取图像分类准确性,并评估我们有益于于不同目标响应的奖励系统的稳健性。
translated by 谷歌翻译
尽管人工智能模型的进步,神经网络仍然无法实现人的表现,部分原因是由于信息是如何编码,并与人脑处理分歧。在一个人工神经网络(ANN)信息是使用统计方法来表示和处理为拟合函数,使在图像,文本和语音处理处理的结构模式。然而,实质性的变化的数据,例如统计特性,扭转的图像的背景,显着降低性能。在这里,我们提出了一个量子叠加扣球量子机制和现象在大脑中,它能够处理图像背景色的反转激发神经网络(QS-SNN)。的QS-SNN结合量子理论与脑启发从计算的角度来看尖峰神经网络模型,从而产生更鲁棒的性能与传统的人工神经网络模型进行比较,处理嘈杂输入时尤其如此。这里给出的结果将成为今后努力开发大脑启发的人工智能。
translated by 谷歌翻译
过去十年来,人们对人工智能(AI)的兴趣激增几乎完全由人工神经网络(ANN)的进步驱动。尽管ANN为许多以前棘手的问题设定了最先进的绩效,但它们需要大量的数据和计算资源进行培训,并且由于他们采用了监督的学习,他们通常需要知道每个培训示例的正确标记的响应,并限制它们对现实世界域的可扩展性。尖峰神经网络(SNN)是使用更多类似脑部神经元的ANN的替代方法,可以使用无监督的学习来发现输入数据中的可识别功能,而又不知道正确的响应。但是,SNN在动态稳定性方面挣扎,无法匹配ANN的准确性。在这里,我们展示了SNN如何克服文献中发现的许多缺点,包括为消失的尖峰问题提供原则性解决方案,以优于所有现有的浅SNN,并等于ANN的性能。它在使用无标记的数据和仅1/50的训练时期使用无监督的学习时完成了这一点(标记数据仅用于最终的简单线性读数层)。该结果使SNN成为可行的新方法,用于使用未标记的数据集快速,准确,有效,可解释的机器学习。
translated by 谷歌翻译
Models of sensory processing and learning in the cortex need to efficiently assign credit to synapses in all areas. In deep learning, a known solution is error backpropagation, which however requires biologically implausible weight transport from feed-forward to feedback paths. We introduce Phaseless Alignment Learning (PAL), a bio-plausible method to learn efficient feedback weights in layered cortical hierarchies. This is achieved by exploiting the noise naturally found in biophysical systems as an additional carrier of information. In our dynamical system, all weights are learned simultaneously with always-on plasticity and using only information locally available to the synapses. Our method is completely phase-free (no forward and backward passes or phased learning) and allows for efficient error propagation across multi-layer cortical hierarchies, while maintaining biologically plausible signal transport and learning. Our method is applicable to a wide class of models and improves on previously known biologically plausible ways of credit assignment: compared to random synaptic feedback, it can solve complex tasks with less neurons and learn more useful latent representations. We demonstrate this on various classification tasks using a cortical microcircuit model with prospective coding.
translated by 谷歌翻译
大脑中尖刺神经元之间的沟通的事件驱动和稀疏性质对灵活和节能的AI来说具有很大的承诺。学习算法的最新进展已经证明,与标准经常性神经网络相比,可以有效地培训尖刺神经元的复发网络以实现竞争性能。尽管如此,随着这些学习算法使用错误 - 反复通过时间(BPTT),它们遭受了高的内存要求,慢慢训练,并且与在线学习不兼容。这将这些学习算法的应用限制为相对较小的网络和有限的时间序列长度。已经提出了具有较低计算和内存复杂性的BPTT的在线近似(E-PROP,OSTL),但在实践中也遭受内存限制,并且作为近似,不要倾销标准BPTT训练。在这里,我们展示了最近开发的BPTT替代方法,通过时间(FPTT)可以应用于尖峰神经网络。与BPTT不同,FPTT试图最大限度地减少损失的持续动态正常风险。结果,可以以在线方式计算FPTT,并且相对于序列长度具有固定的复杂性。与新型动态尖刺神经元模型结合时,液态常数神经元,我们表明SNNS培训了FPTT优于在线BPTT近似,并在时间分类任务上接近或超过离线BPTT精度。因此,这种方法使得在长期序列中以记忆友好的在线方式训练SNNS并向新颖和复杂的神经架构进行扩展。
translated by 谷歌翻译
这项研究提出了依赖电压突触可塑性(VDSP),这是一种新型的脑启发的无监督的本地学习规则,用于在线实施HEBB对神经形态硬件的可塑性机制。拟议的VDSP学习规则仅更新了突触后神经元的尖峰的突触电导,这使得相对于标准峰值依赖性可塑性(STDP)的更新数量减少了两倍。此更新取决于突触前神经元的膜电位,该神经元很容易作为神经元实现的一部分,因此不需要额外的存储器来存储。此外,该更新还对突触重量进行了正规化,并防止重复刺激时的重量爆炸或消失。进行严格的数学分析以在VDSP和STDP之间达到等效性。为了验证VDSP的系统级性能,我们训练一个单层尖峰神经网络(SNN),以识别手写数字。我们报告85.01 $ \ pm $ 0.76%(平均$ \ pm $ s.d。)对于MNIST数据集中的100个输出神经元网络的精度。在缩放网络大小时,性能会提高(400个输出神经元的89.93 $ \ pm $ 0.41%,500个神经元为90.56 $ \ pm $ 0.27),这验证了大规模计算机视觉任务的拟议学习规则的适用性。有趣的是,学习规则比STDP更好地适应输入信号的频率,并且不需要对超参数进行手动调整。
translated by 谷歌翻译
超低功耗本地信号处理是始终安装在设备上的边缘应用的关键方面。尖刺神经网络的神经形态处理器显示出很大的计算能力,同时根据该领域的需要满足有限的电力预算。在这项工作中,我们提出了尖峰神经动力学作为扩张时间卷积的自然替代品。我们将这个想法扩展到WaveSense,这是一个由Wavenet Architects的激发灵感的尖峰神经网络。WaveSense使用简单的神经动力学,固定时间常数和简单的前馈结构,因此特别适用于神经形态实现。我们在几个数据集中测试此模型的功能,以用于关键字斑点。结果表明,该网络击败了其他尖刺神经网络的领域,并达到了诸如CNN和LSTM的人工神经网络的最先进的性能。
translated by 谷歌翻译
Deep spiking neural networks (SNNs) offer the promise of low-power artificial intelligence. However, training deep SNNs from scratch or converting deep artificial neural networks to SNNs without loss of performance has been a challenge. Here we propose an exact mapping from a network with Rectified Linear Units (ReLUs) to an SNN that fires exactly one spike per neuron. For our constructive proof, we assume that an arbitrary multi-layer ReLU network with or without convolutional layers, batch normalization and max pooling layers was trained to high performance on some training set. Furthermore, we assume that we have access to a representative example of input data used during training and to the exact parameters (weights and biases) of the trained ReLU network. The mapping from deep ReLU networks to SNNs causes zero percent drop in accuracy on CIFAR10, CIFAR100 and the ImageNet-like data sets Places365 and PASS. More generally our work shows that an arbitrary deep ReLU network can be replaced by an energy-efficient single-spike neural network without any loss of performance.
translated by 谷歌翻译
Emergence of deep neural networks (DNNs) has raised enormous attention towards artificial neural networks (ANNs) once again. They have become the state-of-the-art models and have won different machine learning challenges. Although these networks are inspired by the brain, they lack biological plausibility, and they have structural differences compared to the brain. Spiking neural networks (SNNs) have been around for a long time, and they have been investigated to understand the dynamics of the brain. However, their application in real-world and complicated machine learning tasks were limited. Recently, they have shown great potential in solving such tasks. Due to their energy efficiency and temporal dynamics there are many promises in their future development. In this work, we reviewed the structures and performances of SNNs on image classification tasks. The comparisons illustrate that these networks show great capabilities for more complicated problems. Furthermore, the simple learning rules developed for SNNs, such as STDP and R-STDP, can be a potential alternative to replace the backpropagation algorithm used in DNNs.
translated by 谷歌翻译
In a recent paper Wunderlich and Pehle introduced the EventProp algorithm that enables training spiking neural networks by gradient descent on exact gradients. In this paper we present extensions of EventProp to support a wider class of loss functions and an implementation in the GPU enhanced neuronal networks framework which exploits sparsity. The GPU acceleration allows us to test EventProp extensively on more challenging learning benchmarks. We find that EventProp performs well on some tasks but for others there are issues where learning is slow or fails entirely. Here, we analyse these issues in detail and discover that they relate to the use of the exact gradient of the loss function, which by its nature does not provide information about loss changes due to spike creation or spike deletion. Depending on the details of the task and loss function, descending the exact gradient with EventProp can lead to the deletion of important spikes and so to an inadvertent increase of the loss and decrease of classification accuracy and hence a failure to learn. In other situations the lack of knowledge about the benefits of creating additional spikes can lead to a lack of gradient flow into earlier layers, slowing down learning. We eventually present a first glimpse of a solution to these problems in the form of `loss shaping', where we introduce a suitable weighting function into an integral loss to increase gradient flow from the output layer towards earlier layers.
translated by 谷歌翻译
预测编码(PC)是皮质功能的一般理论。最近显示了一种PC模型中的本地梯度的学习规则,以密切近似近似。该发现表明,基于梯度的PC模型可能有助于了解大脑如何解决信用分配问题。该模型也可用于开发与神经族硬件兼容的局部学习算法。在本文中,我们修改了该PC模型,使其更好地适合生物限制,包括神经元只能具有正射击率的约束和突触只在一个方向上流动的约束。我们还计算基于梯度的权重和活动更新,给定修改的活动值。我们表明,在某些条件下,这些修改后的PC网络也表现出或几乎在MNIST数据中作为未修改的PC模型和具有BackPropagation培训的网络。
translated by 谷歌翻译
尖峰神经网络(SNN)在各种智能场景中都表现出了出色的功能。大多数现有的训练SNN方法基于突触可塑性的概念。但是,在现实的大脑中学习还利用了神经元的内在非突触机制。生物神经元的尖峰阈值是一种关键的固有神经元特征,在毫秒的时间尺度上表现出丰富的动力学,并已被认为是一种促进神经信息处理的基本机制。在这项研究中,我们开发了一种新型的协同学习方法,该方法同时训练SNN中的突触权重和尖峰阈值。经过突触阈值协同学习(STL-SNN)训练的SNN在各种静态和神经形态数据集上的精度明显高于接受两种突触学习(SL)和阈值学习(TL)的单独学习模型(TL)的SNN。在训练过程中,协同学习方法优化了神经阈值,通过适当的触发速率为网络提供稳定的信号传输。进一步的分析表明,STL-SNN对嘈杂的数据是可靠的,并且对深网结构表现出低的能耗。此外,通过引入广义联合决策框架(JDF),可以进一步提高STL-SNN的性能。总体而言,我们的发现表明,突触和内在的非突触机制之间的生物学上合理的协同作用可能为开发高效的SNN学习方法提供了一种有希望的方法。
translated by 谷歌翻译