离线签名验证(OSV)是各种法医,商业和法律应用的基本生物识别任务。手头的基本任务是仔细对签名的细粒特征进行建模,以区分真正的和锻造的特征,这仅在微小畸形方面有所不同。与其他验证问题相比,这使OSV更具挑战性。在这项工作中,我们提出了一个两阶段的深度学习框架,该框架利用自我监督的表示学习以及对作家独立的OSV的指标学习。首先,我们使用编码器编码器体系结构训练图像重建网络,该架构通过使用签名图像贴片的2D空间注意机制增强。接下来,训练有素的编码器主链使用有监督的度量学习框架对投影仪的负责人进行了微调,其目标是通过对同一作家班级以及其他作家的负面样本进行抽样样本来优化新颖的双重损失。与此相比,与签名样品和跨撰写器集的负样本相比,这背后的直觉是确保签名样本更接近其正对应物。这导致了嵌入空间的强大歧视性学习。据我们所知,这是为OSV使用自我监督的学习框架的第一部作品。提出的两阶段框架已在两个公开脱机签名数据集上进行了评估,并与各种最新方法进行了比较。注意到,提出的方法提供了令人鼓舞的结果,其表现优于几个现有的工作。该代码可在以下公开信息:https://github.com/soumitri2001/surds-ssl-osv
translated by 谷歌翻译
作者独立的离线签名验证是模式识别中最具挑战性的任务之一,因为培训数据通常很少。为了解决此类数据稀缺问题,在本文中,我们为作者独立离线签名验证提供了一个新颖的自学学习(SSL)框架。据我们所知,这是将自我监督设置用于签名验证任务的首次尝试。从签名图像中学习学习的目的是通过最大程度地减少属于不同特征方向的两个随机变量之间的交叉交互,并确保表示相同特征方向的随机变量之间的正交点。这样可以确保功能是线性线性不相关的,并丢弃了冗余信息。通过对不同数据集的实验结果,我们获得了令人鼓舞的结果。
translated by 谷歌翻译
在深度学习研究中,自学学习(SSL)引起了极大的关注,引起了计算机视觉和遥感社区的兴趣。尽管计算机视觉取得了很大的成功,但SSL在地球观测领域的大部分潜力仍然锁定。在本文中,我们对在遥感的背景下为计算机视觉的SSL概念和最新发展提供了介绍,并回顾了SSL中的概念和最新发展。此外,我们在流行的遥感数据集上提供了现代SSL算法的初步基准,从而验证了SSL在遥感中的潜力,并提供了有关数据增强的扩展研究。最后,我们确定了SSL未来研究的有希望的方向的地球观察(SSL4EO),以铺平了两个领域的富有成效的相互作用。
translated by 谷歌翻译
自我监督学习(SSL)是一个新的范式,用于学习判别性表示没有标记的数据,并且与受监督的对手相比,已经达到了可比甚至最新的结果。对比度学习(CL)是SSL中最著名的方法之一,试图学习一般性的信息表示数据。 CL方法主要是针对仅使用单个传感器模态的计算机视觉和自然语言处理应用程序开发的。但是,大多数普遍的计算应用程序都从各种不同的传感器模式中利用数据。虽然现有的CL方法仅限于从一个或两个数据源学习,但我们提出了可可(Crockoa)(交叉模态对比度学习),这是一种自我监督的模型,该模型采用新颖的目标函数来通过计算多功能器数据来学习质量表示形式不同的数据方式,并最大程度地减少了无关实例之间的相似性。我们评估可可对八个最近引入最先进的自我监督模型的有效性,以及五个公共数据集中的两个受监督的基线。我们表明,可可与所有其他方法相比,可可的分类表现出色。同样,可可比其他可用标记数据的十分之一的基线(包括完全监督的模型)的标签高得多。
translated by 谷歌翻译
这项工作旨在改善具有自我监督的实例检索。我们发现使用最近开发的自我监督(SSL)学习方法(如SIMCLR和MOCO)的微调未能提高实例检索的性能。在这项工作中,我们确定了例如检索的学习表示应该是不变的视点和背景等的大变化,而当前SSL方法应用的自增强阳性不能为学习强大的实例级别表示提供强大的信号。为了克服这个问题,我们提出了一种在\ texit {实例级别}对比度上建立的新SSL方法,以通过动态挖掘迷你批次和存储库来学习类内不变性训练。广泛的实验表明,insclr在实例检索上实现了比最先进的SSL方法更类似或更好的性能。代码可在https://github.com/zeludeng/insclr获得。
translated by 谷歌翻译
最近,自我监督的表示学习(SSRL)在计算机视觉,语音,自然语言处理(NLP)以及最近的其他类型的模式(包括传感器的时间序列)中引起了很多关注。自我监督学习的普及是由传统模型通常需要大量通知数据进行培训的事实所驱动的。获取带注释的数据可能是一个困难且昂贵的过程。已经引入了自我监督的方法,以通过使用从原始数据自由获得的监督信号对模型进行判别预训练来提高训练数据的效率。与现有的对SSRL的评论不同,该评论旨在以单一模式为重点介绍CV或NLP领域的方法,我们旨在为时间数据提供对多模式自我监督学习方法的首次全面审查。为此,我们1)提供现有SSRL方法的全面分类,2)通过定义SSRL框架的关键组件来引入通用管道,3)根据其目标功能,网络架构和潜在应用程序,潜在的应用程序,潜在的应用程序,比较现有模型, 4)查看每个类别和各种方式中的现有多模式技术。最后,我们提出了现有的弱点和未来的机会。我们认为,我们的工作对使用多模式和/或时间数据的域中SSRL的要求有了一个观点
translated by 谷歌翻译
由于其最近在减少监督学习的差距方面取得了成功,自我监督的学习方法正在增加计算机愿景的牵引力。在自然语言处理(NLP)中,自我监督的学习和变形金刚已经是选择的方法。最近的文献表明,变压器也在计算机愿景中越来越受欢迎。到目前为止,当使用大规模监督数据或某种共同监督时,视觉变压器已被证明可以很好地工作。在教师网络方面。这些监督的普试视觉变压器在下游任务中实现了非常好的变化,变化最小。在这项工作中,我们调查自我监督学习的预用图像/视觉变压器,然后使用它们进行下游分类任务的优点。我们提出了自我监督的视觉变压器(坐在)并讨论了几种自我监督的培训机制,以获得借口模型。静坐的架构灵活性允许我们将其用作自动统计器,并无缝地使用多个自我监控任务。我们表明,可以在小规模数据集上进行预训练,以便在小型数据集上进行下游分类任务,包括几千个图像而不是数百万的图像。使用公共协议对所提出的方法进行评估标准数据集。结果展示了变压器的强度及其对自我监督学习的适用性。我们通过大边缘表现出现有的自我监督学习方法。我们还观察到坐着很好,很少有镜头学习,并且还表明它通过简单地训练从坐的学到的学习功能的线性分类器来学习有用的表示。预先训练,FineTuning和评估代码将在以下:https://github.com/sara-ahmed/sit。
translated by 谷歌翻译
蒙面图像建模(MIM)在各种视觉任务上取得了令人鼓舞的结果。但是,学到的表示形式的有限可区分性表现出来,使一个更强大的视力学习者还有很多值得一试。为了实现这一目标,我们提出了对比度蒙面的自动编码器(CMAE),这是一种新的自我监督的预训练方法,用于学习更全面和有能力的视觉表示。通过详细统一的对比度学习(CL)和掩盖图像模型(MIM),CMAE利用了它们各自的优势,并以强大的实例可辨别性和局部的可感知来学习表示形式。具体而言,CMAE由两个分支组成,其中在线分支是不对称的编码器编码器,而目标分支是动量更新的编码器。在培训期间,在线编码器从蒙面图像的潜在表示中重建了原始图像,以学习整体特征。馈送完整图像的目标编码器通过其在线学习通过对比度学习增强了功能可区分性。为了使CL与MIM兼容,CMAE引入了两个新组件,即用于生成合理的正视图和特征解码器的像素移位,以补充对比度对的特征。多亏了这些新颖的设计,CMAE可以有效地提高了MIM对应物的表示质量和转移性能。 CMAE在图像分类,语义分割和对象检测的高度竞争基准上实现了最先进的性能。值得注意的是,CMAE-BASE在Imagenet上获得了$ 85.3 \%$ $ TOP-1的准确性和$ 52.5 \%$ MIOU的ADE20K,分别超过了$ 0.7 \%\%$ $和$ 1.8 \%$ $。代码将公开可用。
translated by 谷歌翻译
在基于视觉的辅助技术中,具有不同新兴主题的用例,例如增强现实,虚拟现实和人类计算机互动等不同的主题中的用例中,自动眼目光估计是一个重要问题。在过去的几年中,由于它克服了大规模注释的数据的要求,因此人们对无监督和自我监督的学习范式的兴趣越来越大。在本文中,我们提出了Raze,Raze是一个带有自我监督的注视表示框架的区域,该框架从非宣传的面部图像数据中发挥作用。 Raze通过辅助监督(即伪凝视区域分类)学习目光的表示,其中目的是通过利用瞳孔中心的相对位置将视野分类为不同的凝视区域(即左,右和中心)。因此,我们会自动注释154K Web爬行图像的伪凝视区标签,并通过“ IZE-NET”框架学习特征表示。 “ IZE-NET”是基于胶囊层的CNN体​​系结构,可以有效地捕获丰富的眼睛表示。在四个基准数据集上评估了特征表示的判别性能:洞穴,桌面,MPII和RT-GENE。此外,我们评估了所提出的网络在其他两个下游任务(即驱动器凝视估计和视觉注意估计)上的普遍性,这证明了学习的眼睛注视表示的有效性。
translated by 谷歌翻译
监督的深度学习模型取决于大量标记的数据。不幸的是,收集和注释包含所需更改的零花态样本是耗时和劳动密集型的。从预训练模型中转移学习可有效减轻遥感(RS)变化检测(CD)中标签不足。我们探索在预训练期间使用语义信息的使用。不同于传统的监督预训练,该预训练从图像到标签,我们将语义监督纳入了自我监督的学习(SSL)框架中。通常,多个感兴趣的对象(例如,建筑物)以未经切割的RS图像分布在各个位置。我们没有通过全局池操纵图像级表示,而是在每个像素嵌入式上引入点级监督以学习空间敏感的特征,从而使下游密集的CD受益。为了实现这一目标,我们通过使用语义掩码在视图之间的重叠区域上通过类平衡的采样获得了多个点。我们学会了一个嵌入式空间,将背景和前景点分开,并将视图之间的空间对齐点齐聚在一起。我们的直觉是导致的语义歧视性表示与无关的变化不变(照明和无关紧要的土地覆盖)可能有助于改变识别。我们在RS社区中免费提供大规模的图像面罩,用于预训练。在三个CD数据集上进行的大量实验验证了我们方法的有效性。我们的表现明显优于Imagenet预训练,内域监督和几种SSL方法。经验结果表明我们的预训练提高了CD模型的概括和数据效率。值得注意的是,我们使用20%的培训数据获得了比基线(随机初始化)使用100%数据获得竞争结果。我们的代码可用。
translated by 谷歌翻译
标准的对比学习方法通常需要大量的否定否定有效的无监督学习,并且往往表现出缓慢的收敛性。我们怀疑这种行为是由于用于提供与积极鲜明对比的否定的廉价选择。我们通过从支持向量机(SVM)的灵感来呈现最大值保证金对比学习(MMCL)来抵消这种困难。我们的方法选择否定作为通过二次优化问题获得的稀疏支持向量,通过最大化决策余量来强制执行对比度。由于SVM优化可以计算要求,特别是在端到端设置中,我们提出了缓解计算负担的简化。我们验证了我们对标准视觉基准数据集的方法,展示了在无监督的代表上学习最先进的表现,同时具有更好的经验收敛性。
translated by 谷歌翻译
这项工作提出了一种新型的自我监督的预训练方法,以学习有效的表示,而没有在组织病理学医学图像上使用放大倍率的因素进行标签。其他最先进的工作主要集中在完全监督的学习方法上,这些学习方法严重依赖人类注释。但是,标记和未标记数据的稀缺性是组织病理学的长期挑战。当前,没有标签的表示学习仍未探索组织病理学领域。提出的方法是放大事先的对比相似性(MPC),可以通过利用放大倍率,电感转移和减少人类先验的宽度乳腺癌数据集中的无标签来进行自我监督的学习。当仅20%的标签用于微调和表现以前的工作中,在完全监督的学习环境中,该方法与恶性分类的最新学习相匹配。它提出了一个假设,并提供了经验证据来支持,从而减少人类优先导致自学​​中有效表示学习。这项工作的实施可在github-https://github.com/prakashchhipa/magnification-prior-self-supervised-method上在线获得。
translated by 谷歌翻译
点云的学习表示是3D计算机视觉中的重要任务,尤其是没有手动注释的监督。以前的方法通常会从自动编码器中获得共同的援助,以通过重建输入本身来建立自我判断。但是,现有的基于自我重建的自动编码器仅关注全球形状,而忽略本地和全球几何形状之间的层次结构背景,这是3D表示学习的重要监督。为了解决这个问题,我们提出了一个新颖的自我监督点云表示学习框架,称为3D遮挡自动编码器(3D-OAE)。我们的关键想法是随机遮住输入点云的某些局部补丁,并通过使用剩余的可见图来恢复遮挡的补丁,从而建立监督。具体而言,我们设计了一个编码器,用于学习可见的本地贴片的特征,并设计了一个用于利用这些功能预测遮挡贴片的解码器。与以前的方法相反,我们的3D-OAE可以去除大量的斑块,并仅使用少量可见斑块进行预测,这使我们能够显着加速训练并产生非平凡的自我探索性能。训练有素的编码器可以进一步转移到各种下游任务。我们证明了我们在广泛使用基准下的不同判别和生成应用中的最先进方法的表现。
translated by 谷歌翻译
哥内克人Sentinel Imagery的纯粹卷的可用性为使用深度学习的大尺度创造了新的土地利用陆地覆盖(Lulc)映射的机会。虽然在这种大型数据集上培训是一个非琐碎的任务。在这项工作中,我们试验Lulc Image分类和基准不同最先进模型的Bigearthnet数据集,包括卷积神经网络,多层感知,视觉变压器,高效导通和宽残余网络(WRN)架构。我们的目标是利用分类准确性,培训时间和推理率。我们提出了一种基于用于网络深度,宽度和输入数据分辨率的WRNS复合缩放的高效导通的框架,以有效地训练和测试不同的模型设置。我们设计一种新颖的缩放WRN架构,增强了有效的通道注意力机制。我们提出的轻量级模型具有较小的培训参数,实现所有19个LULC类的平均F分类准确度达到4.5%,并且验证了我们使用的resnet50最先进的模型速度快两倍作为基线。我们提供超过50种培训的型号,以及我们在多个GPU节点上分布式培训的代码。
translated by 谷歌翻译
自我监督的学习(SSL)通过大量未标记的数据的先知,在各种医学成像任务上取得了出色的性能。但是,对于特定的下游任务,仍然缺乏有关如何选择合适的借口任务和实现细节的指令书。在这项工作中,我们首先回顾了医学成像分析领域中自我监督方法的最新应用。然后,我们进行了广泛的实验,以探索SSL中的四个重要问题用于医学成像,包括(1)自我监督预处理对不平衡数据集的影响,(2)网络体系结构,(3)上游任务对下游任务和下游任务和下游任务的适用性(4)SSL和常用政策用于深度学习的堆叠效果,包括数据重新采样和增强。根据实验结果,提出了潜在的指南,以在医学成像中进行自我监督预处理。最后,我们讨论未来的研究方向并提出问题,以了解新的SSL方法和范式时要注意。
translated by 谷歌翻译
高质量注释的医学成像数据集的稀缺性是一个主要问题,它与医学成像分析领域的机器学习应用相撞并阻碍了其进步。自我监督学习是一种最近的培训范式,可以使学习强大的表示无需人类注释,这可以被视为有效的解决方案,以解决带注释的医学数据的稀缺性。本文回顾了自我监督学习方法的最新研究方向,用于图像数据,并将其专注于其在医学成像分析领域的应用。本文涵盖了从计算机视野领域的最新自我监督学习方法,因为它们适用于医学成像分析,并将其归类为预测性,生成性和对比性方法。此外,该文章涵盖了40个在医学成像分析中自学学习领域的最新研究论文,旨在阐明该领域的最新创新。最后,本文以该领域的未来研究指示结束。
translated by 谷歌翻译
医学图像分析的申请遭受了医学专家正确注释的大量数据的急性短缺。监督的学习算法需要大量平衡数据才能学习稳健的表示。经常有监督的学习算法需要各种技术来处理不平衡的数据。另一方面,自我监督的学习算法在数据中是强大的,并且能够学习强大的表示。在这项工作中,我们使用梯度积累技术训练3D BYOL自制模型,以处理自我监督算法中通常需要的批处理中的大量样品。据我们所知,这项工作是该领域中第一个此类工作之一。我们比较了通过当代自我监督预训练的预训练方法以及用动力学400预训练的预训练的RESNET3D-18比较通过实验在ACL泪受损伤检测的下游任务中获得的结果。从下游任务实验中,很明显,所提出的框架优于现有基线。
translated by 谷歌翻译
从积极和未标记的(PU)数据中学习是一种设置,学习者只能访问正面和未标记的样本,而没有关于负面示例的信息。这种PU环境在各种任务中非常重要,例如医学诊断,社交网络分析,金融市场分析和知识基础完成,这些任务也往往本质上是不平衡的,即大多数示例实际上是负面的。但是,大多数现有的PU学习方法仅考虑人工平衡的数据集,目前尚不清楚它们在不平衡和长尾数据分布的现实情况下的表现如何。本文提议通过强大而有效的自我监督预处理来应对这一挑战。但是,培训传统的自我监督学习方法使用高度不平衡的PU分布需要更好的重新重新制定。在本文中,我们提出\ textit {Impulses},这是\ usewanced {im}平衡\下划线{p} osive \ unesive \ usepline {u} nlabeLed \ underline {l}的统一表示的学习框架{p}。 \下划线{s}削弱了debiase预训练。 Impulses使用大规模无监督学习的通用组合以及对比度损失和额外重新持续的PU损失的一般组合。我们在多个数据集上进行了不同的实验,以表明Impuls能够使先前最新的错误率减半,即使与先前给出的真实先验的方法相比。此外,即使在无关的数据集上进行了预处理,我们的方法也表现出对事先错误指定和卓越性能的鲁棒性。我们预计,这种稳健性和效率将使从业者更容易在其他感兴趣的PU数据集上获得出色的结果。源代码可在\ url {https://github.com/jschweisthal/impulses}中获得
translated by 谷歌翻译
在本文中,我们提出了一种基于对比学习的完全监督的预培训方案,特别针对密集的分类任务。所提出的上下文 - 自我对比损失(CSCL)了解嵌入空间,通过在训练样本中的每个位置与其本地上下文之间使用相似性度量来弹出语义边界。对于从卫星图像时间序列(坐)的作物类型语义分割我们在宗地边界中发现性能是一个关键的瓶颈,并解释CSCL如何解决该问题的潜在原因,从而提高本任务中的最先进的性能。此外,我们使用来自Sentinel-2(S2)卫星任务的图像,我们编写了我们的知识,坐在裁剪类型和包裹身份密集地注释的数据集,我们将与数据生成管道一起公开使用。使用我们发现CSCL的数据,即使具有最小的预训练,以改善所有相应的基线,并且在超级分辨率下提出语义分割的过程,以获得更粒度的茶几。下载数据的代码和说明可以在https://github.com/michaeltrs/deepsatmodels中找到。
translated by 谷歌翻译
Masked image modelling (e.g., Masked AutoEncoder) and contrastive learning (e.g., Momentum Contrast) have shown impressive performance on unsupervised visual representation learning. This work presents Masked Contrastive Representation Learning (MACRL) for self-supervised visual pre-training. In particular, MACRL leverages the effectiveness of both masked image modelling and contrastive learning. We adopt an asymmetric setting for the siamese network (i.e., encoder-decoder structure in both branches), where one branch with higher mask ratio and stronger data augmentation, while the other adopts weaker data corruptions. We optimize a contrastive learning objective based on the learned features from the encoder in both branches. Furthermore, we minimize the $L_1$ reconstruction loss according to the decoders' outputs. In our experiments, MACRL presents superior results on various vision benchmarks, including CIFAR-10, CIFAR-100, Tiny-ImageNet, and two other ImageNet subsets. Our framework provides unified insights on self-supervised visual pre-training and future research.
translated by 谷歌翻译