与传统的协作过滤方法相比,图表卷积网络可以明确地模拟用户 - 项目二分类图的节点之间的交互,并有效地使用高阶邻居,这使得图形神经网络能够获得更有效的嵌入品以获得推荐,例如推荐作为ngcf和lightgcn。然而,其表示非常易于相互作用的噪音。在响应这个问题时,SGL探讨了用户项目图上的自我监督学习,以提高GCN的鲁棒性。虽然有效,但我们发现SGL直接适用SIMCLR的比较学习框架。此框架可能不会直接适用于推荐系统的场景,并且没有充分考虑用户项交互的不确定性。在这项工作中,我们的目标是考虑充分建议制度的情景中对比学习的应用,使其更适合推荐任务。我们提出了一个监督的对比学习框架来预先列出用户项目二分钟图,然后微调图形卷积神经网络。具体而言,我们将在数据预处理期间比较用户和项目之间的相似性,然后在应用对比学习时,不仅将增强视图视为正样本,而且还将被视为正样品的一定数量的类似样品。 ,这与SIMCLR不同,他们以批量作为阴性样品处理其他样本。我们将这种学习方法术语定期为监督对比学习(SCL)并将其应用于最先进的LightGCN。另外,为了考虑节点交互的不确定性,我们还提出了一种新的数据增强方法,称为节点复制。
translated by 谷歌翻译
Top-K建议是推荐系统中的一个基本任务,通常通过比较积极和负对对学习。对比损失(CL)是最近受到更多关注的对比学习的关键,我们发现它非常适合Top-K建议。但是,这是一个问题,即CL处理正面和阴性样本的重要性。一方面,CL面向一个正样品的不平衡问题和许多阴性样品。另一方面,稀疏的数据集中很少有稀疏项目应该强调他们的重要性。此外,其他重要问题是稀疏正项目仍然没有充分利用建议。因此,我们通过使用CL损耗功能同时使用多个正项目(或样本)来提出新的数据增强方法。因此,我们提出了一种基于多样的对比损失(MSCL)功能,通过平衡正面和负样本和数据增强的重要性来解决两个问题。基于图表卷积网络(GCN)方法,实验结果表明了MSCL的最先进的性能。所提出的MSCL很简单,可以在许多方法中应用。我们将在验收时发布GitHub上的代码。
translated by 谷歌翻译
推荐系统的目标是通过用户项目的交互历史记录对每个用户和每个项目之间的相关性进行建模,以便最大程度地提高样本得分并最大程度地减少负面样本。当前,两个流行的损失功能被广泛用于优化推荐系统:点心和成对。尽管这些损失功能被广泛使用,但是有两个问题。 (1)这些传统损失功能不适合推荐系统的目标,并充分利用了先验知识信息。 (2)这些传统损失功能的缓慢收敛速度使各种建议模型的实际应用变得困难。为了解决这些问题,我们根据先验知识提出了一个名为“监督个性化排名”(SPR)的新型损失函数。提出的方法通过利用原始数据中每个用户或项目的相互作用历史记录的先验知识来改善BPR损失。与BPR不同,而不是构建<用户,正面项目,负面项目>三元组,而是拟议的SPR构造<用户,相似的用户,正面项目,负面项目,否定项目> Quadruples。尽管SPR非常简单,但非常有效。广泛的实验表明,我们提出的SPR不仅取得了更好的建议性能,而且还可以显着加速收敛速度,从而大大减少所需的训练时间。
translated by 谷歌翻译
社会建议利用社会关系来增强建议的代表性学习。大多数社会推荐模型都将用户互动(协作领域)和社会关系(社会领域)的用户表示统一。但是,这种方法可能无法模拟用户在两个域中的异质行为模式,从而损害了用户表示的表现力。在这项工作中,为了解决这种局限性,我们为社会建议提出了一个新颖的截面对比度学习框架DCREC。更具体地说,我们建议从项目和社会域中学习分开的用户表示。此外,分离的对比度学习旨在在分散的用户表示之间进行社交建议之间的知识转移。各种现实世界数据集的全面实验证明了我们提出的模型的优势。
translated by 谷歌翻译
图形神经网络(GNN)已显示为与用户项目交互图建模的协作过滤(CF)的有前途的解决方案。现有基于GNN的推荐系统的关键思想是递归执行沿用户项目交互边缘传递的消息,以完善编码的嵌入。然而,尽管它们有效,但当前的大多数推荐模型都依赖于足够和高质量的培训数据,因此学习的表示形式可以很好地捕获准确的用户偏好。用户行为数据在许多实际建议方案中通常很嘈杂,并且表现出偏斜的分布,这可能会导致基于GNN的模型中的次优表示性能。在本文中,我们提出了SHT,这是一种新颖的自我监视的超盖变压器框架(SHT),该框架(SHT)通过以明确的方式探索全球协作关系来增强用户表示。具体而言,我们首先赋予图形神经CF范式,以通过HyperGraph Transformer网络维护用户和项目之间的全局协作效果。在蒸馏的全球环境中,提出了一个跨视图生成的自我监督学习组件,用于对用户项目交互图的数据增强,以增强推荐系统的鲁棒性。广泛的实验表明,SHT可以显着改善各种最新基线的性能。进一步的消融研究表明,我们的SHT推荐框架在减轻数据稀疏性和噪声问题方面具有出色的表示能力。源代码和评估数据集可在以下网址获得:https://github.com/akaxlh/sht。
translated by 谷歌翻译
推荐系统预测用户在项目中的潜在兴趣,其中核心是学习用户/项目嵌入品。然而,它遭受了数据稀疏问题,跨域推荐可以缓解。但是,大多数事先有效共同学习源域和目标域模型,或者需要侧面特征。然而,由于学习的嵌入由包含偏置信息的源域主导,共同训练和侧面特征将影响目标域上的预测。受到当代艺术在图形表示学习的预训练中的启发,我们提出了一种用于跨域推荐的预先训练和微调图。我们设计了一种用于跨域推荐(PCREC)的新型预训练图神经网络,其采用了图形编码器的对比自我监督的预训练。然后,我们传输预先训练的图形编码器以初始化目标域上的节点嵌入,这有益于目标域上的单个域推荐系统的微调。实验结果表明了PCRec的优越性。详细分析验证了PCRec在传输信息中的优越性,同时避免来自源域的偏差。
translated by 谷歌翻译
协作过滤(CF)被广泛用于学习用户和从观察到的交互中的项目的信息潜在表示。现有的基于CF的方法通常采用负面抽样来区分不同的项目。在大型数据集上进行负抽样的培训在计算上是昂贵的。此外,应在定义的分布下仔细地对负项目进行采样,以避免在训练数据集中选择观察到的正面项目。不可避免地,在测试集中,从训练数据集中采样的一些负面项目可能是正面的。在本文中,我们提出了一个自我监督的协作过滤框架(SEXTCF),该框架是专门设计的,用于具有隐式反馈的推荐方案。提出的SEXTCF框架简化了暹罗网络,可以轻松地应用于现有的基于深度学习的CF模型,我们称之为骨干网络。 SEXCF的主要思想是增强主链网络生成的输出嵌入,因为它不可避免地增加了用户/项目ID的原始输入。我们建议并研究三种输出扰动技术,可以应用于不同类型的骨干网络,包括传统CF模型和基于图的模型。该框架使学习用户和项目的信息表示无效样本的信息表示,并且对封装的骨干不可知。我们在四个数据集上进行了全面的实验,以表明我们的框架可以比以2 $ \ times $ -4 $ \ times $ $更快的训练速度实现更高的建议准确性。我们还表明,与自我监督的框架Buir相比,SEXCF平均可以提高准确性高达17.79%。
translated by 谷歌翻译
冷启动问题是推荐任务的根本挑战。最近的自我监督学习(SSL)图形神经网络(GNNS)模型,PT-GNN,预先列出GNN模型以重建冷启动嵌入,并为冷启动推荐表示了很大的潜力。然而,由于过平滑的问题,PT-GNN只能捕获多达3阶关系,这不能提供许多有用的辅助信息来描绘目标冷启动用户或项目。此外,嵌入重建任务仅考虑用户和项目的子图内的相关性,同时忽略不同子图之间的相关间。为解决上述挑战,我们提出了一种基于多策略的冷启动推荐(MPT)的预训练方法,它从模型架构和借口任务的角度扩展了PT-GNN,以提高冷启动推荐性能。具体地,在模型架构方面,除了由GNN编码器捕获的用户和项目的短程依赖性之外,我们还引入变压器编码器以捕获远程依赖性。在借口任务方面,除了通过嵌入重建任务考虑用户和项目的相关性,我们还添加了嵌入对比学习任务以捕获用户和项目的相关性。我们在元学习设置下培训GNN和变压器编码,在这些借口任务下,以模拟真实的冷启动方案,使模型轻松迅速,适应新的冷启动用户和项目。三个公共推荐数据集的实验显示了对Vanilla GNN模型的提议MPT模型的优势,预先培训了用户/项目嵌入推断和推荐任务的GNN模型。
translated by 谷歌翻译
包括传统浅层模型和深图神经网络(GNN)在内的图形嵌入方法已导致有希望的应用。然而,由于其优化范式,浅层模型尤其是基于随机步行的算法无法充分利用采样子图或序列中的邻居接近度。基于GNN的算法遇到了高阶信息的利用不足,在堆叠过多的层时很容易引起过度平滑的问题,这可能会恶化低度(长尾)项目的建议,从而限制了表现力和可伸缩性。在本文中,我们提出了一个新颖的框架SAC,即空间自动回归编码,以统一的方式解决上述问题。为了充分利用邻居接近和高级信息,我们设计了一种新型的空间自回旋范式。具体而言,我们首先随机掩盖了多跳的邻居,并通过以明确的多跳上注意来整合所有其他周围的邻居来嵌入目标节点。然后,我们加强模型,通过对比编码和蒙面邻居的嵌入来学习目标节点的邻居预测性编码,并配备了新的硬性阴性采样策略。为了了解目标到邻居预测任务的最小足够表示并删除邻居的冗余,我们通过最大化目标预测性编码和蒙面邻居的嵌入以及同时约束编码之间的相互信息来设计邻居信息瓶颈和周围的邻居的嵌入。公共推荐数据集和实际方案网络规模数据集Douyin-Friend-Recormendation的实验结果证明了SAC的优势与最先进的方法相比。
translated by 谷歌翻译
图表神经网络(GNNS)已广泛应用于推荐任务,并获得了非常吸引人的性能。然而,大多数基于GNN的推荐方法在实践中遭受数据稀疏问题。同时,预训练技术在减轻了各个领域(如自然语言处理(NLP)和计算机视觉(CV)等域中的数据稀疏而取得了巨大成功。因此,图形预培训具有扩大基于GNN的建议的数据稀疏的巨大潜力。但是,预先培训GNN,建议面临独特的挑战。例如,不同推荐任务中的用户项交互图具有不同的用户和项目集,并且它们通常存在不同的属性。因此,在NLP和CV中常用的成功机制将知识从预训练任务转移到下游任务,例如共享所学习的嵌入式或特征提取器,而不是直接适用于现有的基于GNN的推荐模型。为了解决这些挑战,我们精致地设计了一个自适应图形预训练框架,用于本地化协作滤波(适应)。它不需要传输用户/项目嵌入式,并且能够跨越不同图的共同知识和每个图形的唯一性。广泛的实验结果表明了适应的有效性和优越性。
translated by 谷歌翻译
基于会话的建议旨在根据持续的会话预测用户的下一个行为。先前的作品是将会话建模为一系列项目的变量长度,并学习单个项目和汇总会话的表示。最近的研究应用了图形神经网络,具有注意机制,通过将会话建模为图形结构化数据来捕获复杂的项目过渡和依赖性。但是,他们仍然在数据和学习方法方面面临着根本的挑战,例如稀疏监督信号和会议中的嘈杂互动,从而导致次优性能。在本文中,我们提出了SR-GCL,这是一个基于会话建议的新型对比学习框架。作为对比学习的关键组成部分,我们提出了两种全球环境增强的数据增强方法,同时保持原始会话的语义。与其他最先进的方法相比,两个现实世界电子商务数据集的广泛实验结果证明了SR-GCL的优势。
translated by 谷歌翻译
由于许多信息,用户很难找到它们在许多选择中感兴趣的内容。为了提高用户的经验,推荐系统已广泛用于音乐推荐,电影建议,网上购物和其他场景。最近,知识图(KG)已被证明是提高推荐系统性能的有效工具。但是,在应用知识图表中提出建议的巨大挑战是如何使用知识图来获取更好的用户代码和项目代码。为了响应这个问题,本研究提出了一种基于知识图(URIR)的用户经常性神经网络(RNN)编码器和项目编码器推荐算法。该研究通过捕获高级邻居信息来生成项目的表示向量,并应用RNN和项目的表示向量来编码用户以生成用户的表示向量,然后对用户的表示向量和项目执行内部产品操作。表示向量获得用户与项目互动的概率。三个真实数据集上的数值实验表明,URIR对诸如AUC,精密,召回和MRR等指标中的最先进算法的卓越性能。这意味着URIR可以有效地使用知识图来获得更好的用户代码和项目代码,从而获得更好的推荐结果。
translated by 谷歌翻译
To offer accurate and diverse recommendation services, recent methods use auxiliary information to foster the learning process of user and item representations. Many SOTA methods fuse different sources of information (user, item, knowledge graph, tags, etc.) into a graph and use Graph Neural Networks to introduce the auxiliary information through the message passing paradigm. In this work, we seek an alternative framework that is light and effective through self-supervised learning across different sources of information, particularly for the commonly accessible item tag information. We use a self-supervision signal to pair users with the auxiliary information associated with the items they have interacted with before. To achieve the pairing, we create a proxy training task. For a given item, the model predicts the correct pairing between the representations obtained from the users that have interacted with this item and the assigned tags. This design provides an efficient solution, using the auxiliary information directly to enhance the quality of user and item embeddings. User behavior in recommendation systems is driven by the complex interactions of many factors behind the decision-making processes. To make the pairing process more fine-grained and avoid embedding collapse, we propose an intent-aware self-supervised pairing process where we split the user embeddings into multiple sub-embedding vectors. Each sub-embedding vector captures a specific user intent via self-supervised alignment with a particular cluster of tags. We integrate our designed framework with various recommendation models, demonstrating its flexibility and compatibility. Through comparison with numerous SOTA methods on seven real-world datasets, we show that our method can achieve better performance while requiring less training time. This indicates the potential of applying our approach on web-scale datasets.
translated by 谷歌翻译
Bundle建议旨在向用户推荐整个项目。然而,他们通常忽略了用户对采用项目的意图的多样性,并且无法解散用户在表示中的意图。在捆绑建议的实际情况下,用户的意图可以自然分布在该用户的不同捆绑中(全局视图),而捆绑包可能包含用户的多个意图(本地视图)。每个视图都有其意图解开的优势:1)从全球视图中,涉及更多项目来呈现每个意图,这可以更清楚地证明用户在每个意图下的喜好。 2)从本地视图中,它可以揭示每个意图下的项目之间的关联,因为同一捆绑包中的项目彼此高度相关。为此,我们提出了一个名为Multi-View Intentangle图形网络(MIDGN)的新型模型,该模型能够精确,全面地捕获用户意图的多样性和项目的关联,并在更精细的粒度上。具体而言,MIDGN分别从两个不同的角度解开了用户的意图:1)在全球级别,中型中MIDGN将用户的意图与捆绑关系相结合; 2)在本地级别,MIDGN将用户的意图与每个捆绑包中的项目结合在一起。同时,我们比较用户的意图在对比度学习框架下从不同观点中解散,以提高学习意图。在两个基准数据集上进行的广泛实验表明,中期的表现分别超过10.7%和26.8%。
translated by 谷歌翻译
Learning vector representations (aka. embeddings) of users and items lies at the core of modern recommender systems. Ranging from early matrix factorization to recently emerged deep learning based methods, existing efforts typically obtain a user's (or an item's) embedding by mapping from pre-existing features that describe the user (or the item), such as ID and attributes. We argue that an inherent drawback of such methods is that, the collaborative signal, which is latent in user-item interactions, is not encoded in the embedding process. As such, the resultant embeddings may not be sufficient to capture the collaborative filtering effect.In this work, we propose to integrate the user-item interactionsmore specifically the bipartite graph structure -into the embedding process. We develop a new recommendation framework Neural Graph Collaborative Filtering (NGCF), which exploits the useritem graph structure by propagating embeddings on it. This leads to the expressive modeling of high-order connectivity in useritem graph, effectively injecting the collaborative signal into the embedding process in an explicit manner. We conduct extensive experiments on three public benchmarks, demonstrating significant improvements over several state-of-the-art models like HOP-Rec [40] and Collaborative Memory Network [5]. Further analysis verifies the importance of embedding propagation for learning better user and item representations, justifying the rationality and effectiveness of NGCF. Codes are available at https://github.com/ xiangwang1223/neural_graph_collaborative_filtering. CCS CONCEPTS• Information systems → Recommender systems. * In the version published in ACM Digital Library, we find some small bugs; the bugs do not change the comparison results and the empirical findings. In this latest version, we update and correct the experimental results (i.e., the preprocessing of Yelp2018 dataset and the ndcg metric). All updates are highlighted in footnotes.
translated by 谷歌翻译
近年来,多媒体推荐的兴趣日益增长,旨在预测用户是否会与具有多模式内容的项目进行交互。以前的研究侧重于建模用户项目与包含作为侧面信息的多模式特征的交互。但是,该方案并不适用于多媒体推荐。首先,只有通过高阶项 - 用户项共同发生隐含地建模协作项目 - 项目关系。我们认为这些多模式内容的潜在语义项 - 项目结构可以有利于学习更好的项目表示,并协助推荐模型全面发现候选项目。其次,以前的研究忽视了细粒度的多峰融合。虽然访问多种方式可能允许我们捕获丰富的信息,但我们认为以前的工作中的线性组合或连接的简单粗粒融合不足以完全理解内容信息和项目关系。在此结束时,我们提出了一个潜在的结构采用对比模型融合方法(微型简洁性)。具体而言,我们设计了一种新型的模态感知结构学习模块,它为每个模态学习项目项目关系。基于学习的模态感知潜在项目关系,我们执行明确地将物品关联的图形卷评进行了模当感知的项目表示。然后,我们设计一种新颖的对比方法来保险熔断多模峰特征。这些丰富的项目表示可以插入现有的协作过滤方法,以便更准确的建议。关于现实世界数据集的广泛实验证明了我们在最先进的基线上的方法的优越性。
translated by 谷歌翻译
Graph Convolution Network (GCN) has become new state-ofthe-art for collaborative filtering. Nevertheless, the reasons of its effectiveness for recommendation are not well understood. Existing work that adapts GCN to recommendation lacks thorough ablation analyses on GCN, which is originally designed for graph classification tasks and equipped with many neural network operations. However, we empirically find that the two most common designs in GCNs -feature transformation and nonlinear activation -contribute little to the performance of collaborative filtering. Even worse, including them adds to the difficulty of training and degrades recommendation performance.In this work, we aim to simplify the design of GCN to make it more concise and appropriate for recommendation. We propose a new model named LightGCN, including only the most essential component in GCN -neighborhood aggregation -for collaborative filtering. Specifically, LightGCN learns user and item embeddings by linearly propagating them on the user-item interaction graph, and uses the weighted sum of the embeddings learned at all layers as the final embedding. Such simple, linear, and neat model is much easier to implement and train, exhibiting substantial improvements (about 16.0% relative improvement on average) over Neural Graph Collaborative Filtering (NGCF) -a state-of-the-art GCN-based recommender model -under exactly the same experimental setting. Further analyses are provided towards the rationality of the simple LightGCN from both analytical and empirical perspectives. Our implementations are available in both TensorFlow
translated by 谷歌翻译
知识图表通常掺入到推荐系统,以提高整体性能。由于知识图的推广和规模,大多数知识的关系是不是目标用户项预测有帮助。要利用知识图在推荐系统捕捉目标具体知识的关系,我们需要提炼知识图,以保留有用的信息和完善的知识来捕捉用户的喜好。为了解决这个问题,我们提出了知识感知条件注意网络(KCAN),这是一个终端到终端的模式纳入知识图形转换为推荐系统。具体来说,我们使用一个知识感知注意传播方式,以获得所述节点表示第一,其捕获用户 - 项目网络和知识图表对全球语义相似度。然后给出一个目标,即用户 - 项对,我们会自动提炼出知识图到基于知识感知关注的具体目标子。随后,通过在应用子有条件的注意力聚集,我们细化知识图,以获得特定目标节点表示。因此,我们可以得到两个表示性和个性化,以实现整体性能。现实世界的数据集实验结果表明,我们对国家的最先进的算法框架的有效性。
translated by 谷歌翻译
图形相似性学习是指计算两个图之间的相似性得分,这在许多现实的应用程序(例如视觉跟踪,图形分类和协作过滤)中需要。由于大多数现有的图形神经网络产生了单个图的有效图表,因此几乎没有努力共同学习两个图表并计算其相似性得分。此外,现有的无监督图相似性学习方法主要基于聚类,它忽略了图对中体现的有价值的信息。为此,我们提出了一个对比度图匹配网络(CGMN),以进行自我监督的图形相似性学习,以计算任何两个输入图对象之间的相似性。具体而言,我们分别在一对中为每个图生成两个增强视图。然后,我们采用两种策略,即跨视图相互作用和跨刻画相互作用,以实现有效的节点表示学习。前者求助于两种观点中节点表示的一致性。后者用于识别不同图之间的节点差异。最后,我们通过汇总操作进行图形相似性计算将节点表示形式转换为图形表示。我们已经在八个现实世界数据集上评估了CGMN,实验结果表明,所提出的新方法优于图形相似性学习下游任务的最新方法。
translated by 谷歌翻译
近年来,由于图表代表学习的出色表现,图形神经网络(GNN)技术在许多真实情景中获得了相当大的兴趣,例如推荐系统和社交网络。在推荐系统中,主要挑战是从其互动中学习有效的用户/项目表示。但是,由于它们对数据集和评估度量的差异,比较使用GNNS用于推荐系统的GNN的许多出版物。此外,其中许多只提供了一个演示,以对小型数据集进行实验,这很远可在现实世界推荐系统中应用。为了解决这个问题,我们介绍了Graph4Rec,这是一个Universal Toolkit,它统一地将GNN模型培训到以下部分:图表输入,随机步行生成,自我图形生成,对生成和GNNS选择。从这个训练管道,可以通过一些配置轻松建立自己的GNN模型。此外,我们开发了一个大规模的图形引擎和参数服务器,以支持分布式GNN培训。我们进行系统和全面的实验,以比较不同GNN模型在不同规模中的若干场景中的性能。证明了广泛的实验以识别GNN的关键组分。我们还尝试弄清楚稀疏和密集的参数如何影响GNN的性能。最后,我们研究了包括负面采样,自我图形建设顺序和温暖开始策略的方法,以找到更有效和高效的GNNS在推荐系统上做法。我们的工具包基于PGL HTTPS://github.com/paddlePaddle/pgl,并且在https://github.com/paddlepaddle/pgl/tree/main/apps/graph4rec中打开代码。
translated by 谷歌翻译