知识基础问题答案(KBQA)的最新著作检索了子图,以更容易推理。所需的子图至关重要,因为很小的子图可能会排除答案,但是大型答案可能会引入更多的声音。但是,现有的检索要么是启发式的,要么与推理交织在一起,从而导致部分子图的推理,这在缺少中间监督时会增加推理偏见。本文提出了一个与后续推理过程分离的可训练子图检索器(SR),该过程使插件框架可以增强任何面向子图的KBQA模型。广泛的实验表明,与现有检索方法相比,SR的检索和质量检查的性能明显更好。通过弱监督的预训练以及端到端的微调,SRL与基于嵌入基于嵌入的KBQA方法NSM结合使用NSM结合使用NSM时实现了新的最先进性能。
translated by 谷歌翻译
Multi-hop Question Answering over Knowledge Graph~(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question on a large-scale Knowledge Graph (KG). To cope with the vast search space, existing work usually adopts a two-stage approach: it firstly retrieves a relatively small subgraph related to the question and then performs the reasoning on the subgraph to accurately find the answer entities. Although these two stages are highly related, previous work employs very different technical solutions for developing the retrieval and reasoning models, neglecting their relatedness in task essence. In this paper, we propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning. For model architecture, UniKGQA consists of a semantic matching module based on a pre-trained language model~(PLM) for question-relation semantic matching, and a matching information propagation module to propagate the matching information along the edges on KGs. For parameter learning, we design a shared pre-training task based on question-relation matching for both retrieval and reasoning models, and then propose retrieval- and reasoning-oriented fine-tuning strategies. Compared with previous studies, our approach is more unified, tightly relating the retrieval and reasoning stages. Extensive experiments on three benchmark datasets have demonstrated the effectiveness of our method on the multi-hop KGQA task. Our codes and data are publicly available at https://github.com/RUCAIBox/UniKGQA.
translated by 谷歌翻译
知识图表问题基于信息检索旨在通过从大型知识图表中检索答案来回答问题来回答(即,kgqa)。大多数现有方法首先粗略地检索可能包含候选答案的知识子图(KSG),然后搜索子图中的确切答案。然而,粗略检索的KSG可以包含数千个候选节点,因为查询中涉及的知识图通常是大规模的。为了解决这个问题,我们首先建议通过新的子图分区算法将检索到的ksg分区为几个较小的子ksgs,然后呈现一个图形增强学习,以便测量模型以从中选择排名的子ksgs。我们所提出的模型结合了新的子图匹配网络,以捕获问题和子图中的全局交互以及增强的双边多视角匹配模型,以捕获局部交互。最后,我们分别在全KSG和排名级分ksg上应用答案选择模型,以验证我们提出的图形增强学习的效果。多个基准数据集的实验结果表明了我们方法的有效性。
translated by 谷歌翻译
基于嵌入的方法是知识库问题应答(KBQA)的流行,但目前的型号很少有数值推理技能,从而努力回答序数受约束的问题。本文提出了一种新的基于嵌入的KBQA框架,特别是考虑了数值推理。我们在NSM的顶部呈现NumericalTransformer,以最先进的基于嵌入的KBQA模型,以创建NT-NSM。为了实现更好的培训,我们提出了两个在两个生成的训练数据集上具有明确的数字导向损失功能的预训练任务和基于模板的数据增强方法,用于丰富序数约束QA数据集。关于KBQA基准测试的广泛实验表明,在我们的培训算法的帮助下,NT-NSM具有数值推理技能,并且基本上优于基本的基线在回答序数受约束的问题中。
translated by 谷歌翻译
知识基础问题回答(KBQA)旨在通过知识库(KB)回答问题。早期研究主要集中于回答有关KB的简单问题,并取得了巨大的成功。但是,他们在复杂问题上的表现远非令人满意。因此,近年来,研究人员提出了许多新颖的方法,研究了回答复杂问题的挑战。在这项调查中,我们回顾了KBQA的最新进展,重点是解决复杂问题,这些问题通常包含多个主题,表达复合关系或涉及数值操作。详细说明,我们从介绍复杂的KBQA任务和相关背景开始。然后,我们描述用于复杂KBQA任务的基准数据集,并介绍这些数据集的构建过程。接下来,我们提出两个复杂KBQA方法的主流类别,即基于语义解析的方法(基于SP)的方法和基于信息检索的方法(基于IR)。具体而言,我们通过流程设计说明了他们的程序,并讨论了它们的主要差异和相似性。之后,我们总结了这两类方法在回答复杂问题时会遇到的挑战,并解释了现有工作中使用的高级解决方案和技术。最后,我们结论并讨论了与复杂的KBQA有关的几个有希望的方向,以进行未来的研究。
translated by 谷歌翻译
从自然语言问题中构建查询图是在知识图上回答复杂问题(复杂KGQA)的重要一步。通常,如果正确构建其查询图,可以正确回答问题,然后通过针对kg发出查询图来检索正确的答案。因此,本文着重于自然语言问题的查询图生成。查询图生成的现有方法忽略了问题的语义结构,从而导致大量破坏预测准确性的嘈杂的查询图候选者。在本文中,我们从kgqa中的常见问题定义了六个语义结构,并开发了一种新颖的结构,以预测问题的语义结构。通过这样做,我们可以首先过滤嘈杂的候选查询图,然后使用基于BERT的排名模型对剩余的候选人进行排名。与最先进的艺术相比,对两个流行的基准metaqa和WebQuestionsSP(WSP)进行了广泛的实验,证明了我们方法的有效性。
translated by 谷歌翻译
问题回答(QA)对知识库(KBS)的挑战是充满挑战的,因为所需的推理模式多样化,本质上是无限的,类型的推理模式。但是,我们假设以大型KB为基础,以回答各自子图中各个实体的查询类型所需的推理模式。利用不同子图的本地社区之间的这种结构相似性,我们引入了一个半参数模型(cbr-subg),(i)一个非参数组件,每个查询,每个查询,都会动态检索其他类似的$ k $ - $ - $ - $ - near-neart-tebrienk(KNN)培训查询以及查询特定的子图和(ii)训练的参数组件,该参数分量可以从KNN查询的子图中识别(潜在的)推理模式,然后将其应用于目标查询的子图。我们还提出了一种自适应子图收集策略,以选择特定于查询的compact子图,从而使我们可以扩展到包含数十亿个事实的完整freebase kb。我们表明,CBR-SUBG可以回答需要子图推理模式的查询,并在几个KBQA基准上的最佳模型竞争性能。我们的子图收集策略还会产生更多紧凑的子图(例如,webQSP的尺寸减小55 \%,而将答案召回的召回率增加4.85 \%)\ footNote {代码,模型和子码头可在\ url {https://github.com上获得。 /rajarshd/cbr-subg}}。
translated by 谷歌翻译
在知识图上回答自然语言问题(KGQA)仍然是通过多跳推理理解复杂问题的巨大挑战。以前的努力通常利用与实体相关的文本语料库或知识图(kg)嵌入作为辅助信息来促进答案选择。但是,实体之间隐含的富裕语义远未得到很好的探索。本文提议通过利用关系路径的混合语义来改善多跳kgqa。具体而言,我们基于新颖的旋转和规模的实体链接链接预测框架,集成了关系路径的明确文本信息和隐式kg结构特征。在三个KGQA数据集上进行的广泛实验证明了我们方法的优势,尤其是在多跳场景中。进一步的调查证实了我们方法在问题和关系路径之间的系统协调,以识别答案实体。
translated by 谷歌翻译
多跳跃知识基础问题答案(KBQA)旨在在知识库中找到答案实体,这是问题中提到的主题实体的几个啤酒花。现有基于检索的方法首先从问题中生成指令,然后使用它们来指导知识图上的多跳推理。由于指令是在整个推理过程中固定的,并且在指令生成中未考虑知识图,因此一旦错误地预测中间实体,模型就无法修改其错误。为了解决这个问题,我们提出了Kbiger(知识库迭代指令生成和推理),这是一种新颖有效的方法,可以在推理图的帮助下动态生成指令。我们没有在推理之前生成所有指令,而是考虑(k-1)推理图来构建k-th指令。通过这种方式,模型可以检查图表的预测并生成新指令,以修改中间实体的不正确预测。我们对两个多跳KBQA基准测试进行实验,并胜过现有方法,并成为新州。进一步的实验表明,我们的方法确实检测到中间实体的不正确预测,并具有修改此类错误的能力。
translated by 谷歌翻译
知识库问题的最现有的方法接听(KBQA)关注特定的基础知识库,原因是该方法的固有假设,或者因为在不同的知识库上评估它需要非琐碎的变化。然而,许多流行知识库在其潜在模式中的相似性份额可以利用,以便于跨知识库的概括。为了实现这一概念化,我们基于2级架构介绍了一个KBQA框架,该架构明确地将语义解析与知识库交互分开,促进了数据集和知识图中的转移学习。我们表明,具有不同潜在知识库的数据集预先灌注可以提供显着的性能增益并降低样本复杂性。我们的方法可实现LC-Quad(DBPedia),WEDQSP(FreeBase),简单问话(Wikidata)和MetaQA(WikiMovies-KG)的可比性或最先进的性能。
translated by 谷歌翻译
使用从预先接受训练的语言模型(LMS)和知识图表(LMS)和知识图表(kgs)回答问题的问题提出了两个挑战:给定QA上下文(问答选择),方法需要(i)从大型千克识别相关知识,(ii)对QA上下文和kg进行联合推理。在这项工作中,我们提出了一种新的模型,QA-GNN,它通过两个关键创新解决了上述挑战:(i)相关评分,我们使用LMS来估计KG节点相对于给定的QA上下文的重要性,以及(ii)联合推理,我们将QA上下文和kg连接到联合图,并通过图形神经网络相互更新它们的表示。我们评估了QA基准的模型(CommanSeaseQA,OpenBookQA)和生物医学(MedQa-USMLE)域名。QA-GNN优于现有的LM和LM + kg模型,并表现出可解释和结构化推理的能力,例如,正确处理问题的否定。
translated by 谷歌翻译
Knowledge graph (KG) link prediction aims to infer new facts based on existing facts in the KG. Recent studies have shown that using the graph neighborhood of a node via graph neural networks (GNNs) provides more useful information compared to just using the query information. Conventional GNNs for KG link prediction follow the standard message-passing paradigm on the entire KG, which leads to over-smoothing of representations and also limits their scalability. On a large scale, it becomes computationally expensive to aggregate useful information from the entire KG for inference. To address the limitations of existing KG link prediction frameworks, we propose a novel retrieve-and-read framework, which first retrieves a relevant subgraph context for the query and then jointly reasons over the context and the query with a high-capacity reader. As part of our exemplar instantiation for the new framework, we propose a novel Transformer-based GNN as the reader, which incorporates graph-based attention structure and cross-attention between query and context for deep fusion. This design enables the model to focus on salient context information relevant to the query. Empirical results on two standard KG link prediction datasets demonstrate the competitive performance of the proposed method.
translated by 谷歌翻译
预训练的语言模型(PTLM)已显示出在自然语言任务上表现良好。许多先前的作品都以通过知识图(KGS)标记的关系链接的实体的形式利用结构性常识来协助PTLM。检索方法使用kg作为单独的静态模块,该模块限制了覆盖范围,因为kgs包含有限的知识。生成方法训练PTLMS kg三倍以提高获得知识的规模。但是,对符号KG实体的培训限制了其在涉及自然语言文本的任务中的适用性,在这些任务中,它们忽略了整体上下文。为了减轻这种情况,我们提出了一个以句子为条件的常识性上下文化器(COSE-CO)作为输入,以使其在生成与输入文本的整体上下文相关的任务中通常可用。为了训练Cose-Co,我们提出了一个新的数据集,其中包括句子和常识知识对。 COSE-CO推断出的知识是多种多样的,并且包含了基础KG中不存在的新实体。我们增强了在多选质量质量检查和开放式常识性推理任务中产生的知识,从而改善了CSQA,ARC,QASC和OBQA数据集的当前最佳方法。我们还展示了其在改善释义生成任务的基线模型方面的适用性。
translated by 谷歌翻译
表问题回答(表QA)是指从表中提供精确的答案来回答用户的问题。近年来,在表质量检查方面有很多作品,但是对该研究主题缺乏全面的调查。因此,我们旨在提供表QA中可用数据集和代表性方法的概述。我们根据其技术将现有的表质量质量质量检查分为五个类别,其中包括基于语义的,生成,提取,基于匹配的基于匹配的方法和基于检索的方法。此外,由于表质量质量质量检查仍然是现有方法的一项艰巨的任务,因此我们还识别和概述了一些关键挑战,并讨论了表质量质量检查的潜在未来方向。
translated by 谷歌翻译
从头开始解决复杂问题通常是有挑战性的,但如果我们可以访问其解决方案的其他类似问题,则更容易 - 一种称为基于案例的推理(CBR)的范式。我们提出了一种神经象征性的CBR方法(CBR-KBQA),用于在大知识库上应答。 CBR-KBQA由非参数内存组成,该内存存储案例(问题和逻辑表单)和参数模型,该参数模型可以通过检索与其相关的案例来为新问题生成逻辑表单。在包含复杂问题的几个KBQA数据集上,CBR-KBQA实现了竞争性能。例如,在ComplexWebQuestions数据集上,CBR-KBQA以11 \%的准确度优于当前最新状态。此外,我们表明CBR-KBQA能够使用新案例\ EMPH {没有}任何进一步的培训:通过在案例存储器中纳入一些人类标记的示例,CBR-KBQA能够成功地生成包含未经看线KB实体的逻辑表格以及关系。
translated by 谷歌翻译
在过去的几年中,临床笔记中的问题回答(QA)引起了很多关注。临床领域中现有的机器阅读理解方法只能处理有关单个临床文本的问题,并且无法检索有关多个患者及其临床笔记的信息。为了处理更复杂的问题,我们旨在从临床注释中创建知识库,以将不同的患者和临床笔记联系起来,并进行知识基础问题答案(KBQA)。根据N2C2数据集中可用的专家注释,我们首先创建了ClinicalKBQA数据集,其中包括大约9K QA对,并使用300多个问题模板涵盖了有关七个医学主题的问题。然后,我们研究了KBQA的一种基于注意力的方面推理(AAR)方法,并分析了答案的不同方面(例如,实体,类型,路径和上下文)对预测的影响。由于设计精良的编码器和注意力机制,AAR方法可实现更好的性能。从我们的实验中,我们发现这两个方面,类型和路径都使模型能够识别满足一般条件的答案,并产生较低的精度和更高的回忆。另一方面,各个方面,实体和上下文通过特定于节点的信息限制答案,并导致更高的精度和较低的回忆。
translated by 谷歌翻译
知识图形问题应答(kgqa)涉及使用自然语言查询从知识图(kg)中检索事实。 KG是由关系相关的实体组成的策划事实集。某些事实还包括形成时间kg(tkg)的时间信息。虽然许多自然问题涉及显式或隐含的时间限制,但TKGS上的问题应答(QA)是一个相对未开发的地区。现有解决方案主要是为简单的时间问题设计,可以通过单个TKG事实直接回答。本文提出了一种全面的嵌入式框架,用于回答TKGS的复杂问题。我们的方法被称为时间问题推理(TempoQR)利用TKG Embeddings将问题与其指的特定实体和时间范围进行地面。它通过使用三个专用模块增强与上下文,实体和时空信息的问题嵌入问题。第一个计算给定问题的文本表示,第二个将其与所涉及的实体的实体嵌入物组合,第三个生成特定于特定于问题的时间嵌入。最后,基于变换器的编码器学习用问题表示来融合生成的时间信息,该问题表示用于答案预测。广泛的实验表明,TempoQR在最先进的方法上通过25-45个百分点提高了25--45个百分点,并且它将更好地概括到未经说明的问题类型。
translated by 谷歌翻译
知识图(kg)嵌入是一种主流方法,用于推理不完整的kg。但是,受其固有浅层和静态体系结构的限制,它们几乎无法处理对复杂逻辑查询的不断上升,这些查询包括逻辑运算符,估算的边缘,多个源实体和未知的中间实体。在这项工作中,我们通过掩盖的预训练和微调策略介绍了知识图变压器(kgtransformer)。我们设计了一种kg三重变换方法,以使变压器能够处理kg,这是通过稀疏(MOE)稀疏激活的混合物进一步增强的。然后,我们将复杂的逻辑查询作为掩盖预测提出,并引入了两阶段掩盖的预训练策略,以提高可转移性和概括性。在两个基准上进行的广泛实验表明,KGTRANSFORMER可以始终超过基于KG的基准和九个内域和室外推理任务的高级编码。此外,KGTRANSFORMER可以通过提供解释给定答案的完整推理路径来解释性。
translated by 谷歌翻译
我们研究了学习因果推理对程序文本的挑战,以回答“如果...”何时需要外常识知识。我们提出了一个新颖的多跳图推理模型,以1)有效地从大知识图中提取常识子图;2)通过推理从常识子图获得的表示以及问题与上下文之间的上下文相互作用来预测因果答案。我们评估了WIQA基准测试的模型,并与最近的模型相比实现了最先进的性能。
translated by 谷歌翻译
知识库问题应答(KBQA)旨在在外部知识库的帮助下回答自然语言问题。核心思想是找到内部知识与知识库的已知三元组之间的内部知识之间的联系。 KBQA任务管道包含几个步骤,包括实体识别,关系提取和实体链接。这种管道方法意味着任何过程中的错误将不可避免地传播到最终预测。为了解决上述问题,本文提出了一种具有预培训语言模型(PLM)和知识图(KG)的语料库生成 - 检索方法(CGRM)。首先,基于MT5模型,我们设计了两个新的预训练任务:基于段落的知识屏蔽语言建模和问题,以获取知识增强型T5(KT5)模型。其次,在用一系列启发式规则预处理知识图的预处理之后,KT5模型基于处理的三元组生成自然语言QA对。最后,我们通过检索合成数据集直接解决QA。我们在NLPCC-ICCPOL 2016 KBQA数据集上测试我们的方法,结果表明,我们的框架提高了KBQA的性能,直接向前的方法与最先进的方法竞争。
translated by 谷歌翻译