在医学图像分析中,许多疾病的微妙视觉特征要具有挑战性,尤其是由于缺乏配对数据。例如,在温和的阿尔茨海默氏病(AD)中,很难从纯成像数据中观察到脑组织萎缩,尤其是没有配对的AD和认知正常(CN)数据以进行比较。这项工作介绍了疾病发现甘(Didigan),这是一种基于弱的基于风格的框架,可发现和可视化细微的疾病特征。 Didigan了解了AD和CN视觉特征的疾病歧管,并将此歧管采样的样式代码施加到解剖结构“蓝图”上,以综合配对AD和CN磁共振图像(MRIS)。为了抑制生成的AD和CN对之间的非疾病相关变化,Didigan利用具有循环一致性和抗偏置的结构约束来实施解剖对应关系。当对阿尔茨海默氏病神经影像学计划(ADNI)数据集进行测试时,Didigan通过合成的配对AD和CN扫描显示了关键的AD特征(减少海马体积,心室增大和皮质结构的萎缩)。定性结果通过自动化的大脑体积分析来支持,其中还测量了脑组织结构的系统成对降低
translated by 谷歌翻译
生成的对抗网络(GAN)是在众多领域成功使用的一种强大的深度学习模型。它们属于一个称为生成方法的更广泛的家族,该家族通过从真实示例中学习样本分布来生成新数据。在临床背景下,与传统的生成方法相比,GAN在捕获空间复杂,非线性和潜在微妙的疾病作用方面表现出增强的能力。这篇综述评估了有关gan在各种神经系统疾病的成像研究中的应用的现有文献,包括阿尔茨海默氏病,脑肿瘤,脑老化和多发性硬化症。我们为每个应用程序提供了各种GAN方法的直观解释,并进一步讨论了在神经影像学中利用gans的主要挑战,开放问题以及有希望的未来方向。我们旨在通过强调如何利用gan来支持临床决策,并有助于更好地理解脑部疾病的结构和功能模式,从而弥合先进的深度学习方法和神经病学研究之间的差距。
translated by 谷歌翻译
生成对抗网络(GAN)具有许多潜在的医学成像应用,包括数据扩展,域适应和模型解释。由于图形处理单元(GPU)的记忆力有限,因此在低分辨率的医学图像上对当前的3D GAN模型进行了训练,因此这些模型要么无法扩展到高分辨率,要么容易出现斑驳的人工制品。在这项工作中,我们提出了一种新颖的端到端GAN体系结构,可以生成高分辨率3D图像。我们通过使用训练和推理之间的不同配置来实现这一目标。在训练过程中,我们采用了层次结构,该结构同时生成图像的低分辨率版本和高分辨率图像的随机选择子量。层次设计具有两个优点:首先,对高分辨率图像训练的记忆需求在子量之间摊销。此外,将高分辨率子体积固定在单个低分辨率图像上可确保子量化之间的解剖一致性。在推断期间,我们的模型可以直接生成完整的高分辨率图像。我们还将具有类似层次结构的编码器纳入模型中,以从图像中提取特征。 3D胸CT和脑MRI的实验表明,我们的方法在图像生成中的表现优于最新技术。我们还证明了所提出的模型在数据增强和临床相关特征提取中的临床应用。
translated by 谷歌翻译
The existence of completely aligned and paired multi-modal neuroimaging data has proved its effectiveness in diagnosis of brain diseases. However, collecting the full set of well-aligned and paired data is expensive or even impractical, since the practical difficulties may include high cost, long time acquisition, image corruption, and privacy issues. A realistic solution is to explore either an unsupervised learning or a semi-supervised learning to synthesize the absent neuroimaging data. In this paper, we are the first one to comprehensively approach cross-modality neuroimage synthesis task from different perspectives, which include the level of the supervision (especially for weakly-supervised and unsupervised), loss function, evaluation metrics, the range of modality synthesis, datasets (aligned, private and public) and the synthesis-based downstream tasks. To begin with, we highlight several opening challenges for cross-modality neuroimage sysnthesis. Then we summarize the architecture of cross-modality synthesis under various of supervision level. In addition, we provide in-depth analysis of how cross-modality neuroimage synthesis can improve the performance of different downstream tasks. Finally, we re-evaluate the open challenges and point out the future directions for the remaining challenges. All resources are available at https://github.com/M-3LAB/awesome-multimodal-brain-image-systhesis
translated by 谷歌翻译
基于深度学习的疾病检测和分割算法承诺提高许多临床过程。然而,由于数据隐私,法律障碍和非统一数据采集协议,此类算法需要大量的注释训练数据,通常在医学环境中不可用。具有注释病理学的合成数据库可以提供所需的培训数据量。我们展示了缺血性卒中的例子,即利用基于深度学习的增强的病变分割的改善是可行的。为此,我们训练不同的图像到图像转换模型,以合成大脑体积的磁共振图像,并且没有来自语义分割图的中风病变。此外,我们培养一种生成的对抗性网络来产生合成病变面具。随后,我们组合这两个组件来构建大型合成描边图像数据库。使用U-NET评估各种模型的性能,该U-NET在临床测试集上培训以进行段中风病变。我们向最佳性能报告$ \ mathbf {72.8} $%[$ \ mathbf {70.8 \ pm1.0} $%]的骰子分数,这胜过了单独临床图像培训的模型培训$ \ mathbf { 67.3} $%[$ \ mathbf {63.2 \ pm1.9} $%],并且接近人类互相互联网骰子评分$ \ mathbf {76.9} $%。此外,我们表明,对于仅为10或50个临床案例的小型数据库,与使用不使用合成数据的设置相比,合成数据增强产生了显着的改进。据我们所知,这提出了基于图像到图像翻译的合成数据增强的第一个比较分析,并将第一应用于缺血性卒中。
translated by 谷歌翻译
为了实现良好的性能和概括性,医疗图像分割模型应在具有足够可变性的大量数据集上进行培训。由于道德和治理限制以及与标签数据相关的成本,经常对科学发展进行扼杀,并经过对有限数据的培训和测试。数据增强通常用于人为地增加数据分布的可变性并提高模型的通用性。最近的作品探索了图像合成的深层生成模型,因为这种方法将使有效的无限数据生成多种多样的数据,从而解决了通用性和数据访问问题。但是,许多提出的解决方案限制了用户对生成内容的控制。在这项工作中,我们提出了Brainspade,该模型将基于合成扩散的标签发生器与语义图像发生器结合在一起。我们的模型可以在有或没有感兴趣的病理的情况下产生完全合成的大脑标签,然后产生任意引导样式的相应MRI图像。实验表明,Brainspade合成数据可用于训练分割模型,其性能与在真实数据中训练的模型相当。
translated by 谷歌翻译
甚至在没有受限,监督的情况下,也提出了甚至在没有受限或有限的情况下学习普遍陈述的方法。使用适度数量的数据可以微调新的目标任务,或者直接在相应任务中实现显着性能的无奈域中使用的良好普遍表示。这种缓解数据和注释要求为计算机愿景和医疗保健的应用提供了诱人的前景。在本辅导纸上,我们激励了对解散的陈述,目前关键理论和详细的实际构建块和学习此类表示的标准的需求。我们讨论医学成像和计算机视觉中的应用,强调了在示例钥匙作品中进行的选择。我们通过呈现剩下的挑战和机会来结束。
translated by 谷歌翻译
大型医学成像数据集变得越来越多。这些数据集中的一个普遍挑战是确保每个样本满足没有重要人工制品的最低质量要求。尽管已经开发出广泛的现有自动方法来识别医学成像中的缺陷和人工制品,但它们主要依赖于渴望数据的方法。特别是,缺乏可用于培训的手工艺品的足够扫描,在临床研究中设计和部署机器学习方面造成了障碍。为了解决这个问题,我们提出了一个具有四个主要组成部分的新颖框架:(1)一组受磁共振物理启发的手工艺发电机,以损坏大脑MRI扫描和增强培训数据集,(2)一组抽象和工程的功能,紧凑地表示图像,(3)一个特征选择过程,取决于人工制品的类别以提高分类性能,以及(4)一组受过训练以识别人工制品的支持向量机(SVM)分类器。我们的新颖贡献是三重的:首先,我们使用新型的基于物理的人工制品发生器来生成以受控的人工制品作为数据增强技术的合成脑MRI扫描。这将避免使用稀有人工制品的劳动密集型收集和标记过程。其次,我们提出了开发的大量抽象和工程图像特征,以识别9种不同的结构MRI伪像。最后,我们使用一个基于人工制品的功能选择块,该块,对于每类的人工制品,可以找到提供最佳分类性能的功能集。我们对具有人工生成的人工制品的大量数据扫描进行了验证实验,并且在一项多发性硬化症临床试验中,专家确定了真实的人工制品,这表明拟议管道表现优于传统方法。
translated by 谷歌翻译
We present VoxelMorph, a fast learning-based framework for deformable, pairwise medical image registration. Traditional registration methods optimize an objective function for each pair of images, which can be time-consuming for large datasets or rich deformation models. In contrast to this approach, and building on recent learning-based methods, we formulate registration as a function that maps an input image pair to a deformation field that aligns these images. We parameterize the function via a convolutional neural network (CNN), and optimize the parameters of the neural network on a set of images. Given a new pair of scans, VoxelMorph rapidly computes a deformation field by directly evaluating the function. In this work, we explore two different training strategies. In the first (unsupervised) setting, we train the model to maximize standard image matching objective functions that are based on the image intensities. In the second setting, we leverage auxiliary segmentations available in the training data. We demonstrate that the unsupervised model's accuracy is comparable to state-of-the-art methods, while operating orders of magnitude faster. We also show that VoxelMorph trained with auxiliary data improves registration accuracy at test time, and evaluate the effect of training set size on registration. Our method promises to speed up medical image analysis and processing pipelines, while facilitating novel directions in learning-based registration and its applications. Our code is freely available at http://voxelmorph.csail.mit.edu.
translated by 谷歌翻译
创伤性脑损伤(TBI)患者的脑网络分析对于其意识水平评估和预后评估至关重要,这需要分割某些意识相关的大脑区域。但是,由于很难收集TBI患者的手动注释的MR扫描,因此很难构建TBI分割模型。数据增强技术可用于缓解数据稀缺问题。但是,常规数据增强策略(例如空间和强度转化)无法模仿创伤性大脑中的变形和病变,这限制了后续分割任务的性能。为了解决这些问题,我们提出了一种名为TBIGA的新型医学图像授课模型,以通过配对的脑标签图合成TBI MR扫描。我们的TBIGAN方法的主要优势在于,它可以同时生成TBI图像和相应的标签映射,这在以前的医学图像的先前涂上方法中尚未实现。我们首先按照粗到细节的方式在边缘信息的指导下生成成分的图像,然后将合成强度图像用作标签上填充的先验。此外,我们引入了基于注册的模板增强管道,以增加合成图像对的多样性并增强数据增强能力。实验结果表明,提出的TBIGAN方法可以产生具有高质量和有效标签图的足够合成的TBI图像,这可以大大改善与替代方案相比的2D和3D创伤性脑部分割性能。
translated by 谷歌翻译
图像到图像翻译(I2I)是一个充满挑战的计算机视觉问题,用于多个任务的众多域。最近,眼科成为I2i的应用迅速增加的主要领域之一。一种这样的应用是合成视网膜光学相干断层(OCT)扫描的产生。现有的I2I方法需要培训多种模型,将图像从正常扫描转换为特定病理学:限制由于它们的复杂性而对这些模型的使用。要解决此问题,我们提出了一个无监督的多域I2I网络,具有预先培训的样式编码器,可将一个域中的视网膜OCT图像转换为多个域。我们假设图像分裂到域不变内容和域特定的样式代码,并预先培训这些样式代码。所执行的实验表明,所提出的模型优于Munit和Cyclangan合成不同的病理扫描等最先进的模型。
translated by 谷歌翻译
背景:虽然卷积神经网络(CNN)实现了检测基于磁共振成像(MRI)扫描的阿尔茨海默病(AD)痴呆的高诊断准确性,但它们尚未应用于临床常规。这是一个重要原因是缺乏模型可理解性。最近开发的用于导出CNN相关性图的可视化方法可能有助于填补这种差距。我们调查了具有更高准确性的模型还依赖于先前知识预定义的判别脑区域。方法:我们培训了CNN,用于检测痴呆症和Amnestic认知障碍(MCI)患者的N = 663 T1加权MRI扫描的AD,并通过交叉验证和三个独立样本验证模型的准确性= 1655例。我们评估了相关评分和海马体积的关联,以验证这种方法的临床效用。为了提高模型可理解性,我们实现了3D CNN相关性图的交互式可视化。结果:跨三个独立数据集,组分离表现出广告痴呆症与控制的高精度(AUC $ \ GEQUQ $ 0.92)和MCI与控制的中等精度(AUC $ \约0.75美元)。相关性图表明海马萎缩被认为是广告检测的最具信息性因素,其其他皮质和皮质区域中的萎缩额外贡献。海马内的相关评分与海马体积高度相关(Pearson的r $ \大约$ -0.86,p <0.001)。结论:相关性地图突出了我们假设先验的地区的萎缩。这加强了CNN模型的可理解性,这些模型基于扫描和诊断标签以纯粹的数据驱动方式培训。
translated by 谷歌翻译
Accurate diagnosis of Alzheimer's disease (AD) is both challenging and time consuming. With a systematic approach for early detection and diagnosis of AD, steps can be taken towards the treatment and prevention of the disease. This study explores the practical application of deep learning models for diagnosis of AD. Due to computational complexity, large training times and limited availability of labelled dataset, a 3D full brain CNN (convolutional neural network) is not commonly used, and researchers often prefer 2D CNN variants. In this study, full brain 3D version of well-known 2D CNNs were designed, trained and tested for diagnosis of various stages of AD. Deep learning approach shows good performance in differentiating various stages of AD for more than 1500 full brain volumes. Along with classification, the deep learning model is capable of extracting features which are key in differentiating the various categories. The extracted features align with meaningful anatomical landmarks, that are currently considered important in identification of AD by experts. An ensemble of all the algorithm was also tested and the performance of the ensemble algorithm was superior to any individual algorithm, further improving diagnosis ability. The 3D versions of the trained CNNs and their ensemble have the potential to be incorporated in software packages that can be used by physicians/radiologists to assist them in better diagnosis of AD.
translated by 谷歌翻译
Recent advances in computer vision have shown promising results in image generation. Diffusion probabilistic models in particular have generated realistic images from textual input, as demonstrated by DALL-E 2, Imagen and Stable Diffusion. However, their use in medicine, where image data typically comprises three-dimensional volumes, has not been systematically evaluated. Synthetic images may play a crucial role in privacy preserving artificial intelligence and can also be used to augment small datasets. Here we show that diffusion probabilistic models can synthesize high quality medical imaging data, which we show for Magnetic Resonance Images (MRI) and Computed Tomography (CT) images. We provide quantitative measurements of their performance through a reader study with two medical experts who rated the quality of the synthesized images in three categories: Realistic image appearance, anatomical correctness and consistency between slices. Furthermore, we demonstrate that synthetic images can be used in a self-supervised pre-training and improve the performance of breast segmentation models when data is scarce (dice score 0.91 vs. 0.95 without vs. with synthetic data).
translated by 谷歌翻译
儿科肌肉骨骼系统的形态学和诊断评价在临床实践中至关重要。但是,大多数分段模型在稀缺的儿科成像数据上都不好。我们提出了一种新的预训练的正则化卷积编码器 - 解码器,用于分割异质儿科磁共振(MR)图像的具有挑战性的任务。在这方面,我们采用转移学习方法以及正规化策略来改善分段模型的概括。为此,我们已经构思了用于分割网络的新颖优化方案,其包括丢失函数的额外正则化术语。为了获得全局一致的预测,我们纳入了基于形状的正则化,从自动编码器学习的非线性形状表示来源。另外,通过鉴别器计算的对抗正规化是集成的,以鼓励合理的描绘。评估来自脚踝和肩部关节的两个稀缺的小儿摄像数据集的多骨分割任务的方法,包括病理和健康检查。所提出的方法与先前提出的骰子,灵敏度,特异性,最大对称表面距离,平均对称表面距离和相对绝对体积差异度量的方法更好或以前的方法进行更好或以前的方法进行比例。我们说明所提出的方法可以很容易地集成到各种骨骼分割策略中,并且可以提高在大型非医学图像数据库上预先培训的模型的预测准确性。获得的结果为小儿肌肉骨骼障碍的管理带来了新的视角。
translated by 谷歌翻译
可变形的图像注册对于许多医学图像分析是基础。准确图像注册的关键障碍在于图像外观变化,例如纹理,强度和噪声的变化。这些变化在医学图像中很明显,尤其是在经常使用注册的大脑图像中。最近,使用深神经网络的基于深度学习的注册方法(DLR)显示了计算效率,比基于传统优化的注册方法(ORS)快几个数量级。 DLR依靠一个全球优化的网络,该网络经过一组培训样本训练以实现更快的注册。但是,DLR倾向于无视ORS固有的目标对特异性优化,因此已经降低了对测试样品变化的适应性。这种限制对于注册出现较大的医学图像的限制是严重的,尤其是因为很少有现有的DLR明确考虑了外观的变化。在这项研究中,我们提出了一个外观调整网络(AAN),以增强DLR对外观变化的适应性。当我们集成到DLR中时,我们的AAN提供了外观转换,以减少注册过程中的外观变化。此外,我们提出了一个由解剖结构约束的损失函数,通过该函数,我们的AAN产生了解剖结构的转化。我们的AAN被目的设计为容易插入广泛的DLR中,并且可以以无监督和端到端的方式进行合作培训。我们用三个最先进的DLR评估了3D脑磁共振成像(MRI)的三个公共数据集(MRI)。结果表明,我们的AAN始终提高了现有的DLR,并且在注册精度上优于最先进的OR,同时向现有DLR增加了分数计算负载。
translated by 谷歌翻译
Segmenting the fine structure of the mouse brain on magnetic resonance (MR) images is critical for delineating morphological regions, analyzing brain function, and understanding their relationships. Compared to a single MRI modality, multimodal MRI data provide complementary tissue features that can be exploited by deep learning models, resulting in better segmentation results. However, multimodal mouse brain MRI data is often lacking, making automatic segmentation of mouse brain fine structure a very challenging task. To address this issue, it is necessary to fuse multimodal MRI data to produce distinguished contrasts in different brain structures. Hence, we propose a novel disentangled and contrastive GAN-based framework, named MouseGAN++, to synthesize multiple MR modalities from single ones in a structure-preserving manner, thus improving the segmentation performance by imputing missing modalities and multi-modality fusion. Our results demonstrate that the translation performance of our method outperforms the state-of-the-art methods. Using the subsequently learned modality-invariant information as well as the modality-translated images, MouseGAN++ can segment fine brain structures with averaged dice coefficients of 90.0% (T2w) and 87.9% (T1w), respectively, achieving around +10% performance improvement compared to the state-of-the-art algorithms. Our results demonstrate that MouseGAN++, as a simultaneous image synthesis and segmentation method, can be used to fuse cross-modality information in an unpaired manner and yield more robust performance in the absence of multimodal data. We release our method as a mouse brain structural segmentation tool for free academic usage at https://github.com/yu02019.
translated by 谷歌翻译
三维(3D)医学图像的产生可能具有巨大的应用潜力,因为它考虑了3D解剖结构。但是,有两个问题可以防止有效培训3D医疗生成模型:(1)3D医学图像的获取和注释非常昂贵,导致培训图像不足,(2)大量参数是参与3D卷积。为了解决这两个问题,我们提出了一种名为3D Split&Shuffle-Gan的新型GAN模型。为了解决3D数据稀缺问题,我们首先使用丰富的图像切片预先培训二维(2D)GAN模型,并夸大2D卷积权重以改善3D GAN的初始化。为GAN模型的生成器和鉴别器提出了新型的3D网络体系结构,以显着减少参数的数量,同时保持图像生成的质量。研究了许多体重通胀策略和参数有效的3D架构。对心脏(Stanford Aimi冠状动脉钙)和大脑(阿尔茨海默氏病神经成像计划)的实验表明,所提出的方法会导致改善的3D图像产生质量,参数较少。
translated by 谷歌翻译
诊断阿尔茨海默病(AD)的早期阶段(AD)对于及时治疗至关重要以缓慢进一步恶化。可视化广告早期阶段的形态特征是巨大的临床价值。在这项工作中,提出了一种新的多向感知生成的对抗网络(MP-GaN)来可视化表明不同阶段患者的广告严重程度的形态特征。具体地,通过将​​新的多向映射机制引入模型中,所提出的MP-GaN可以有效地捕获突出全局特征。因此,通过利用来自发电机的类别辨别图,所提出的模型可以通过源域和预定义目标域之间的MR图像变换清楚地描绘微妙的病变。此外,通过集成对抗性损失,分类损失,周期一致性损失和\ emph {l} 1惩罚,MP-GaN中的单个发电机可以学习多类的类鉴别映射。对阿尔茨海默病神经影像倡议(ADNI)数据集进行了广泛的实验结果表明,与现有方法相比,MP-GAN实现了卓越的性能。由MP-GaN可视化的病变也与临床医人观察到的一致。
translated by 谷歌翻译
从磁共振成像(MRI)数据(称为颅骨条状)中去除非脑信号是许多神经图像分析流的组成部分。尽管它们很丰富,但通常是针对具有特定采集特性的图像量身定制的,即近乎各向异性的分辨率和T1加权(T1W)MRI对比度,这些分辨率在研究环境中很普遍。结果,现有的工具倾向于适应其他图像类型,例如在诊所常见的快速旋转回声(FSE)MRI中获得的厚切片。尽管近年来基于学习的大脑提取方法已获得吸引力,但这些方法面临着类似的负担,因为它们仅对训练过程中看到的图像类型有效。为了在成像协议的景观中实现强大的颅骨缠身,我们引入了Synthstrip,这是一种快速,基于学习的脑萃取工具。通过利用解剖学分割来生成具有解剖学,强度分布和远远超过现实医学图像范围的完全合成训练数据集,Synthstrip学会了成功推广到各种真实获得的大脑图像,从而消除了使用训练数据的需求目标对比。我们证明了合成条的功效对受试者人群的各种图像采集和决议的功效,从新生儿到成人。我们显示出与流行的颅骨基线的准确性的实质性提高 - 所有这些基线都采用单个训练有素的模型。我们的方法和标记的评估数据可在https://w3id.org/synthstrip上获得。
translated by 谷歌翻译