人们众所周知,与卷积神经网络相比,变压器在语义分割方面的性能更好。然而,最初的视觉变压器可能缺乏当地社区的归纳偏见,并且具有较高的时间复杂性。最近,Swin Transformer通过使用分层体系结构并更有效地改变了窗口,在各种视觉任务中创建了新记录。但是,由于Swin Transformer是专门为图像分类设计的,因此它可能在基于密集的预测分段任务上实现次优性能。此外,仅使用现有方法对SWIN Transformer梳理将导致最终分割模型的模型大小和参数的提升。在本文中,我们重新考虑了Swin Transformer进行语义分割,并设计了一个轻巧但有效的变压器模型,称为SSFormer。在此模型中,考虑到SWIN Transformer的固有层次设计,我们提出了一个解码器来汇总来自不同层的信息,从而获得了局部和全局的注意。实验结果表明,提出的SSFormer与最先进的模型产生了可比的MIOU性能,同时保持较小的模型尺寸和较低的计算。
translated by 谷歌翻译
图像中的场景细分是视觉内容理解中的一个基本而又具有挑战性的问题,即学习一个模型,将每个图像像素分配给分类标签。这项学习任务的挑战之一是考虑空间和语义关系以获得描述性特征表示,因此从多个量表中学习特征图是场景细分中的一种常见实践。在本文中,我们探讨了在多尺度图像窗口中自我发挥的有效使用来学习描述性视觉特征,然后提出三种不同的策略来汇总这些特征图以解码特征表示形式以进行密集的预测。我们的设计基于最近提出的SWIN Transformer模型,该模型完全放弃了卷积操作。借助简单而有效的多尺度功能学习和聚合,我们的模型在四个公共场景细分数据集,Pascal VOC2012,Coco-STUFF 10K,ADE20K和CITYSCAPES上实现了非常有希望的性能。
translated by 谷歌翻译
We present SegFormer, a simple, efficient yet powerful semantic segmentation framework which unifies Transformers with lightweight multilayer perceptron (MLP) decoders. SegFormer has two appealing features: 1) SegFormer comprises a novel hierarchically structured Transformer encoder which outputs multiscale features. It does not need positional encoding, thereby avoiding the interpolation of positional codes which leads to decreased performance when the testing resolution differs from training. 2) SegFormer avoids complex decoders. The proposed MLP decoder aggregates information from different layers, and thus combining both local attention and global attention to render powerful representations. We show that this simple and lightweight design is the key to efficient segmentation on Transformers. We scale our approach up to obtain a series of models from SegFormer-B0 to SegFormer-B5, reaching significantly better performance and efficiency than previous counterparts. For example, SegFormer-B4 achieves 50.3% mIoU on ADE20K with 64M parameters, being 5× smaller and 2.2% better than the previous best method. Our best model, SegFormer-B5, achieves 84.0% mIoU on Cityscapes validation set and shows excellent zero-shot robustness on Cityscapes-C. Code will be released at: github.com/NVlabs/SegFormer.Preprint. Under review.
translated by 谷歌翻译
Semantic segmentation usually benefits from global contexts, fine localisation information, multi-scale features, etc. To advance Transformer-based segmenters with these aspects, we present a simple yet powerful semantic segmentation architecture, termed as IncepFormer. IncepFormer has two critical contributions as following. First, it introduces a novel pyramid structured Transformer encoder which harvests global context and fine localisation features simultaneously. These features are concatenated and fed into a convolution layer for final per-pixel prediction. Second, IncepFormer integrates an Inception-like architecture with depth-wise convolutions, and a light-weight feed-forward module in each self-attention layer, efficiently obtaining rich local multi-scale object features. Extensive experiments on five benchmarks show that our IncepFormer is superior to state-of-the-art methods in both accuracy and speed, e.g., 1) our IncepFormer-S achieves 47.7% mIoU on ADE20K which outperforms the existing best method by 1% while only costs half parameters and fewer FLOPs. 2) Our IncepFormer-B finally achieves 82.0% mIoU on Cityscapes dataset with 39.6M parameters. Code is available:github.com/shendu0321/IncepFormer.
translated by 谷歌翻译
在图像变压器网络的编码器部分中的FineTuning佩带的骨干网一直是语义分段任务的传统方法。然而,这种方法揭示了图像在编码阶段提供的语义上下文。本文认为将图像的语义信息纳入预磨料的基于分层变换器的骨干,而FineTuning可显着提高性能。为实现这一目标,我们提出了一个简单且有效的框架,在语义关注操作的帮助下将语义信息包含在编码器中。此外,我们在训练期间使用轻量级语义解码器,为每个阶段提供监督对中间语义的先前地图。我们的实验表明,结合语义前导者增强了所建立的分层编码器的性能,随着絮凝物的数量略有增加。我们通过将Sromask集成到Swin-Cransformer的每个变体中提供了经验证明,因为我们的编码器与不同的解码器配对。我们的框架在CudeScapes数据集上实现了ADE20K数据集的新型58.22%的MIOU,并在Miou指标中提高了超过3%的内容。代码和检查点在https://github.com/picsart-ai-research/semask-egation上公开使用。
translated by 谷歌翻译
由于长距离依赖性建模的能力,变压器在各种自然语言处理和计算机视觉任务中表现出令人印象深刻的性能。最近的进展证明,将这种变压器与基于CNN的语义图像分割模型相结合非常有前途。然而,目前还没有很好地研究了纯变压器的方法如何实现图像分割。在这项工作中,我们探索了语义图像分割的新框架,它是基于编码器 - 解码器的完全变压器网络(FTN)。具体地,我们首先提出金字塔组变压器(PGT)作为逐步学习分层特征的编码器,同时降低标准视觉变压器(VIT)的计算复杂性。然后,我们将特征金字塔变换器(FPT)提出了来自PGT编码器的多电平进行语义图像分割的多级别的语义级别和空间级信息。令人惊讶的是,这种简单的基线可以在多个具有挑战性的语义细分和面部解析基准上实现更好的结果,包括帕斯卡背景,ADE20K,Cocostuff和Celebamask-HQ。源代码将在https://github.com/br -dl/paddlevit上发布。
translated by 谷歌翻译
This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation is computed with Shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO testdev) and semantic segmentation (53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-theart by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures. The code and models are publicly available at https://github. com/microsoft/Swin-Transformer.
translated by 谷歌翻译
多尺度表示对于语义细分至关重要。社区目睹了利用多尺度上下文信息的语义分割卷积神经网络(CNN)的蓬勃发展。通过视觉变压器(VIV)的动机是强大的图像分类,最近提出了一些语义分割VITS,其中大多数是令人印象深刻的结果,但以计算经济为代价。在本文中,我们通过窗口注意机制成功地将多尺度表示引入语义分割vit,并进一步提高了性能和效率。为此,我们介绍了大型窗口关注,允许本地窗口在略微计算开销时仅查询大面积的上下文窗口。通过调节上下文区域与查询区域的比率,我们可以在多个尺度上捕获大量窗口注意。此外,采用空间金字塔汇集的框架与大窗口关注合作,这提出了一种名为大型窗口注意空​​间金字塔池(LawinAspp)的新型解码器,用于语义细分vit。我们所产生的Vit,草坪变压器由一个高效的定理视觉变压器(HVT)作为编码器和作为解码器的草坪Appp。实证结果表明,与现有方法相比,草坪变压器提供了提高的效率。草坪变压器进一步为城市景观(84.4 \%Miou),ADE20K(56.2 \%Miou)和Coco-incumate集进行了新的最先进的性能。代码将在https://github.com/yan-hao-tian/lawin发布。
translated by 谷歌翻译
卷积神经网络(CNN)已成为医疗图像分割任务的共识。但是,由于卷积操作的性质,它们在建模长期依赖性和空间相关性时受到限制。尽管最初开发了变压器来解决这个问题,但它们未能捕获低级功能。相比之下,证明本地和全球特征对于密集的预测至关重要,例如在具有挑战性的环境中细分。在本文中,我们提出了一种新型方法,该方法有效地桥接了CNN和用于医学图像分割的变压器。具体而言,我们使用开创性SWIN变压器模块和一个基于CNN的编码器设计两个多尺度特征表示。为了确保从上述两个表示获得的全局和局部特征的精细融合,我们建议在编码器编码器结构的跳过连接中提出一个双层融合(DLF)模块。在各种医学图像分割数据集上进行的广泛实验证明了Hiformer在计算复杂性以及定量和定性结果方面对其他基于CNN的,基于变压器和混合方法的有效性。我们的代码可在以下网址公开获取:https://github.com/amirhossein-kz/hiformer
translated by 谷歌翻译
计算机辅助医学图像分割已广泛应用于诊断和治疗,以获得靶器官和组织的形状和体积的临床有用信息。在过去的几年中,基于卷积神经网络(CNN)的方法(例如,U-Net)占主导地位,但仍遭受了不足的远程信息捕获。因此,最近的工作提出了用于医学图像分割任务的计算机视觉变压器变体,并获得了有希望的表现。这种变压器通过计算配对贴片关系来模拟远程依赖性。然而,它们促进了禁止的计算成本,尤其是在3D医学图像(例如,CT和MRI)上。在本文中,我们提出了一种称为扩张变压器的新方法,该方法在本地和全球范围内交替捕获的配对贴片关系进行自我关注。灵感来自扩张卷积核,我们以扩张的方式进行全球自我关注,扩大接收领域而不增加所涉及的斑块,从而降低计算成本。基于这种扩展变压器的设计,我们构造了一个用于3D医学图像分割的U形编码器解码器分层体系结构。 Synapse和ACDC数据集的实验表明,我们的D-Ager Model从头开始培训,以低计算成本从划痕训练,优于各种竞争力的CNN或基于变压器的分段模型,而不耗时的每训练过程。
translated by 谷歌翻译
多年来,卷积神经网络(CNN)已成为多种计算机视觉任务的事实上的标准。尤其是,基于开创性体系结构(例如具有跳过连接的U形模型)或具有金字塔池的Artous卷积的深度神经网络已针对广泛的医学图像分析任务量身定制。此类架构的主要优点是它们容易拘留多功能本地功能。然而,作为一般共识,CNN无法捕获由于卷积操作的固有性能的内在特性而捕获长期依赖性和空间相关性。另外,从全球信息建模中获利的变压器源于自我发项机制,最近在自然语言处理和计算机视觉方面取得了出色的表现。然而,以前的研究证明,局部和全局特征对于密集预测的深层模型至关重要,例如以不同的形状和配置对复杂的结构进行分割。为此,本文提出了TransDeeplab,这是一种新型的DeepLab样纯变压器,用于医学图像分割。具体而言,我们用移动的窗口利用层次旋转式变形器来扩展DeepLabV3并建模非常有用的空间金字塔池(ASPP)模块。对相关文献的彻底搜索结果是,我们是第一个用基于纯变压器模型对开创性DeepLab模型进行建模的人。关于各种医学图像分割任务的广泛实验证明,我们的方法在视觉变压器和基于CNN的方法的合并中表现出色或与大多数当代作品相提并论,并显着降低了模型复杂性。代码和训练有素的模型可在https://github.com/rezazad68/transdeeplab上公开获得
translated by 谷歌翻译
视觉表示学习是解决各种视力问题的关键。依靠开创性的网格结构先验,卷积神经网络(CNN)已成为大多数深视觉模型的事实上的标准架构。例如,经典的语义分割方法通常采用带有编码器编码器体系结构的完全横向卷积网络(FCN)。编码器逐渐减少了空间分辨率,并通过更大的接受场来学习更多抽象的视觉概念。由于上下文建模对于分割至关重要,因此最新的努力一直集中在通过扩张(即极度)卷积或插入注意力模块来增加接受场。但是,基于FCN的体系结构保持不变。在本文中,我们旨在通过将视觉表示学习作为序列到序列预测任务来提供替代观点。具体而言,我们部署纯变压器以将图像编码为一系列贴片,而无需局部卷积和分辨率减少。通过在变压器的每一层中建立的全球环境,可以学习更强大的视觉表示形式,以更好地解决视力任务。特别是,我们的细分模型(称为分割变压器(SETR))在ADE20K上擅长(50.28%MIOU,这是提交当天测试排行榜中的第一个位置),Pascal环境(55.83%MIOU),并在CityScapes上达到竞争成果。此外,我们制定了一个分层局部全球(HLG)变压器的家族,其特征是窗户内的本地关注和跨窗户的全球性专注于层次结构和金字塔架构。广泛的实验表明,我们的方法在各种视觉识别任务(例如,图像分类,对象检测和实例分割和语义分割)上实现了吸引力的性能。
translated by 谷歌翻译
特征图的分辨率对于医学图像分割至关重要。大多数现有用于医疗图像分割的基于变压器的网络都是U-NET样体系结构,其中包含一个编码器,该编码器利用一系列变压器块将输入医疗图像从高分辨率表示形式转换为低分辨率特征图和解码器这逐渐从低分辨率特征图中恢复了高分辨率表示。与以前的研究不同,在本文中,我们利用高分辨率网络(HRNET)的网络设计样式,用变压器块替换卷积层,并从变压器块生成的不同分辨率特征图中连续交换信息。本文介绍的新基于变压器的网络表示为高分辨率SWIN Transformer网络(HRSTNET)。广泛的实验表明,HRSTNET可以与基于最新的变压器类似于脑肿瘤分割的U-NET样结构(BRATS)2021和Medical Sementation Decathlon的肝数据集实现可比的性能。 HRSTNET代码将在https://github.com/auroua/hrstnet上公开获得。
translated by 谷歌翻译
Image segmentation is often ambiguous at the level of individual image patches and requires contextual information to reach label consensus. In this paper we introduce Segmenter, a transformer model for semantic segmentation. In contrast to convolution-based methods, our approach allows to model global context already at the first layer and throughout the network. We build on the recent Vision Transformer (ViT) and extend it to semantic segmentation. To do so, we rely on the output embeddings corresponding to image patches and obtain class labels from these embeddings with a point-wise linear decoder or a mask transformer decoder. We leverage models pre-trained for image classification and show that we can fine-tune them on moderate sized datasets available for semantic segmentation. The linear decoder allows to obtain excellent results already, but the performance can be further improved by a mask transformer generating class masks. We conduct an extensive ablation study to show the impact of the different parameters, in particular the performance is better for large models and small patch sizes. Segmenter attains excellent results for semantic segmentation. It outperforms the state of the art on both ADE20K and Pascal Context datasets and is competitive on Cityscapes.
translated by 谷歌翻译
具有编码器解码器架构的全卷积网络(FCN)是语义分段的标准范例。编码器 - 解码器架构利用编码器来捕获多级特征映射,其被解码器结合到最终预测中。随着上下文对于精确分割至关重要,已经提出了以智能方式提取此类信息的巨大努力,包括采用扩张/不受欢迎的卷曲或插入注意模块。但是,这些努力都基于与Reset或其他底座的FCN架构,它不能完全利用理论概念的上下文。相比之下,我们提出了Swin变压器作为骨干,以提取上下文信息并设计密集连接的特征聚合模块(DCFAM)的新型解码器,以恢复分辨率并产生分割图。两个遥感语义分割数据集的实验结果证明了提出方案的有效性。
translated by 谷歌翻译
这项竞争重点是基于车辆摄像头视图的城市义细分。高度不平衡的城市义图像数据集挑战了现有的解决方案和进一步的研究。深度传统的基于神经网络的语义分割方法,例如编码器架构以及基于金字塔的多尺度和基于金字塔的方法,成为适用于现实世界应用程序的灵活解决方案。在这项比赛中,我们主要回顾有关变压器驱动方法(尤其是Segformer)的文献和进行实验,以实现性能和效率之间的最佳权衡。例如,Segformer-B0以最小的拖鞋,15.6G和最大的模型,Segformer-B5存档的80.2%MIOU获得了74.6%MIOU。根据多个因素,包括个体案例失败分析,个体班级绩效,训练压力和效率估计,竞争的最终候选模型为Segformer-b2,在测试集中评估了50.6 GFLOPS和78.5%MIOU。在https://vmv.re/cv3315上查看我们的代码实现。
translated by 谷歌翻译
我们提出Segnext,这是一种简单的卷积网络体系结构,用于语义分割。由于自我注意力在编码空间信息中的效率,基于变压器的最新模型已主导语义分割领域。在本文中,我们表明卷积注意是一种比变形金刚中的自我注意机制更有效的编码上下文信息的方法。通过重新检查成功分割模型所拥有的特征,我们发现了几个关键组件,从而导致分割模型的性能提高。这促使我们设计了一个新型的卷积注意网络,该网络使用廉价的卷积操作。没有铃铛和哨子,我们的Segnext显着提高了先前最先进的方法对流行基准测试的性能,包括ADE20K,CityScapes,Coco-stuff,Pascal VOC,Pascal Context和ISAID。值得注意的是,segnext优于w/ nas-fpn的效率超过lavenet-l2,在帕斯卡VOC 2012测试排行榜上仅使用1/10参数,在Pascal VOC 2012测试排行榜上达到90.6%。平均而言,与具有相同或更少计算的ADE20K数据集上的最新方法相比,Segnext的改进约为2.0%。代码可在https://github.com/uyzhang/jseg(jittor)和https://github.com/visual-cratch-network/segnext(pytorch)获得。
translated by 谷歌翻译
本文解决了由多头自我注意力(MHSA)中高计算/空间复杂性引起的视觉变压器的低效率缺陷。为此,我们提出了层次MHSA(H-MHSA),其表示以层次方式计算。具体而言,我们首先将输入图像分为通常完成的补丁,每个补丁都被视为令牌。然后,拟议的H-MHSA学习本地贴片中的令牌关系,作为局部关系建模。然后,将小贴片合并为较大的贴片,H-MHSA对少量合并令牌的全局依赖性建模。最后,汇总了本地和全球专注的功能,以获得具有强大表示能力的功能。由于我们仅在每个步骤中计算有限数量的令牌的注意力,因此大大减少了计算负载。因此,H-MHSA可以在不牺牲细粒度信息的情况下有效地模拟令牌之间的全局关系。使用H-MHSA模块合并,我们建立了一个基于层次的变压器网络的家族,即HAT-NET。为了证明在场景理解中HAT-NET的优越性,我们就基本视觉任务进行了广泛的实验,包括图像分类,语义分割,对象检测和实例细分。因此,HAT-NET为视觉变压器提供了新的视角。可以在https://github.com/yun-liu/hat-net上获得代码和预估计的模型。
translated by 谷歌翻译
视觉变压器在众多计算机视觉任务上表现出了巨大的成功。然而,由于计算复杂性和记忆足迹是二次的,因此其中心分量(软磁性注意力)禁止视觉变压器扩展到高分辨率图像。尽管在自然语言处理(NLP)任务中引入了线性注意以减轻类似问题,但直接将现有的线性注意力应用于视觉变压器可能不会导致令人满意的结果。我们研究了这个问题,发现与NLP任务相比,计算机视觉任务更多地关注本地信息。基于这一观察结果,我们提出了附近的关注,该关注引入了具有线性复杂性的视觉变压器的局部性偏见。具体而言,对于每个图像补丁,我们根据其相邻贴片测量的2D曼哈顿距离调整了注意力重量。在这种情况下,相邻的补丁比遥远的补丁会受到更大的关注。此外,由于我们的附近注意力要求令牌长度比特征维度大得多,以显示其效率优势,因此我们进一步提出了一个新的附近视觉变压器(VVT)结构,以减少特征维度而不脱离准确性。我们在CIFAR100,ImagEnet1k和ADE20K数据集上进行了广泛的实验,以验证我们方法的有效性。当输入分辨率增加时,与以前的基于变压器和基于卷积的网络相比,GFLOP的增长率较慢。特别是,我们的方法达到了最新的图像分类精度,其参数比以前的方法少50%。
translated by 谷歌翻译
我们提出了全球环境视觉变压器(GC VIT),这是一种新的结构,可增强参数和计算利用率。我们的方法利用了与本地自我注意的联合的全球自我发项模块,以有效但有效地建模长和短距离的空间相互作用,而无需昂贵的操作,例如计算注意力面罩或移动本地窗户。此外,我们通过建议在我们的体系结构中使用修改后的融合倒置残差块来解决VIT中缺乏归纳偏差的问题。我们提出的GC VIT在图像分类,对象检测和语义分割任务中实现了最新的结果。在用于分类的ImagEnet-1k数据集上,基本,小而微小的GC VIT,$ 28 $ M,$ 51 $ M和$ 90 $ M参数实现$ \ textbf {83.2 \%} $,$ \ textbf {83.9 \%} $和$ \ textbf {84.4 \%} $ top-1的精度,超过了相当大的先前艺术,例如基于CNN的Convnext和基于VIT的Swin Transformer,其优势大大。在对象检测,实例分割和使用MS Coco和ADE20K数据集的下游任务中,预训练的GC VIT主机在对象检测,实例分割和语义分割的任务中始终如一地超过事务,有时是通过大余量。可在https://github.com/nvlabs/gcvit上获得代码。
translated by 谷歌翻译