随着各种公开的AI伦理原则的共识,差距仍然可以随时采用设计和开发负责任的AI系统。我们研究了来自澳大利亚国家科学研究机构(CSIRO)的研究人员和工程师的实践和经验,他们参与设计和开发AI系统的一系列目的。半结构化访谈用于检查参与者的做法如何与澳大利亚政府提出的一套高级AI伦理原则涉及并对齐。原则包括:隐私保护和安全,可靠性和安全性,透明度和解释性,公平性,竞争性,责任,人以人为本的价值观和人类,社会与环境福祉。研究了研究人员和工程师的见解以及在原则的实际应用中为它们提供的挑战。最后,提供了一系列组织响应,以支持实施高级AI道德原则。
translated by 谷歌翻译
机器学习(ML)系统的开发和部署可以用现代工具轻松执行,但该过程通常是匆忙和意思是结束的。缺乏勤奋会导致技术债务,范围蠕变和未对准的目标,模型滥用和失败,以及昂贵的后果。另一方面,工程系统遵循明确定义的流程和测试标准,以简化高质量,可靠的结果的开发。极端是航天器系统,其中关键任务措施和鲁棒性在开发过程中根深蒂固。借鉴航天器工程和ML的经验(通过域名通过产品的研究),我们开发了一种经过验证的机器学习开发和部署的系统工程方法。我们的“机器学习技术准备水平”(MLTRL)框架定义了一个原则的过程,以确保强大,可靠和负责的系统,同时为ML工作流程流线型,包括来自传统软件工程的关键区别。 MLTRL甚至更多,MLTRL为跨团队和组织的人们定义了一个人工智能和机器学习技术的人员。在这里,我们描述了通过生产化和部署在医学诊断,消费者计算机视觉,卫星图像和粒子物理学等领域,以通过生产和部署在基本研究中开发ML方法的几个现实世界使用情况的框架和阐明。
translated by 谷歌翻译
如今,由于最近在人工智能(AI)和机器学习(ML)中的近期突破,因此,智能系统和服务越来越受欢迎。然而,机器学习不仅满足软件工程,不仅具有有希望的潜力,而且还具有一些固有的挑战。尽管最近的一些研究努力,但我们仍然没有明确了解开发基于ML的申请和当前行业实践的挑战。此外,目前尚不清楚软件工程研究人员应将其努力集中起来,以更好地支持ML应用程序开发人员。在本文中,我们报告了一个旨在了解ML应用程序开发的挑战和最佳实践的调查。我们合成从80名从业者(以不同的技能,经验和应用领域)获得的结果为17个调查结果;概述ML应用程序开发的挑战和最佳实践。参与基于ML的软件系统发展的从业者可以利用总结最佳实践来提高其系统的质量。我们希望报告的挑战将通知研究界有关需要调查的主题,以改善工程过程和基于ML的申请的质量。
translated by 谷歌翻译
在软件项目中引入机器学习(ML)组件创造了软件工程师与数据科学家和其他专家合作。虽然合作可以始终具有挑战性,但ML介绍了探索性模型开发过程的额外挑战,需要额外的技能和知识,测试ML系统的困难,需要连续演化和监测,以及非传统质量要求,如公平性和解释性。通过采访来自28个组织的45名从业者,我们确定了在建立和将ML系统部署到生产时面临的关键合作挑战。我们报告了生产ML系统的开发中的共同合作点,以获得要求,数据和集成以及相应的团队模式和挑战。我们发现,这些挑战中的大部分挑战围绕通信,文档,工程和流程以及收集建议以解决这些挑战。
translated by 谷歌翻译
在每日新兴科学调查和发现的世界中,跨行业的机器学习的多产推出对于熟悉ML潜力的人来说令人惊讶。这种伦理集中研究的一致性既不是对源于同一申请的偏见和不公平问题的回应而产生的。对抗算法偏差的技术的公平研究现在比以往任何时候都更加支持。大部分公平研究已经开始生产工具,即机器学习从业者可以在设计其算法时审核偏差。尽管如此,在实践中缺乏应用这些公平解决方案。该系统审查提供了已经定义的算法偏置问题的深入摘要,并提出了公平解决空间。此外,本综述提供了对溶液空间的深入崩溃,自释放以来出现的溶液空间以及机器学习从业者,公平研究人员和机构利益攸关方提出的需求的分类。这些需求已经组织并向各方组织并解决了其实施,包括公平研究人员,产生ML算法的组织以及机器学习从业者自己。这些发现可以在未来使用,以弥合从业者和公平专家之间的差距,并告知创建可用的展示展示率工具包。
translated by 谷歌翻译
虽然AI有利于人类,但如果没有适当发展,它也可能会损害人类。 HCI工作的重点是从与非AI计算系统的传统人类交互转换,以与AI系统交互。我们在HCI视角下开展了高级文献综述,对当前工作的整体分析。我们的审核和分析突出了AI技术引入的新变更以及HCI专业人员在AI系统开发中应用人以人为本的AI(HCAI)方法时,新挑战的新挑战。我们还确定了与AI系统人类互动的七个主要问题,其中HCI专业人员在开发非AI计算系统时没有遇到。为了进一步实现HCAI方法的实施,我们确定了与特定的HCAI驱动的设计目标相关的新的HCI机会,以指导HCI专业人员解决这些新问题。最后,我们对当前HCI方法的评估显示了这些方法支持开发AI系统的局限性。我们提出了可以帮助克服这些局限性的替代方法,并有效帮助HCI专业人员将HCAI方法应用于AI系统的发展。我们还为HCI专业人员提供战略建议,以有效影响利用HCAI方法的AI系统的发展,最终发展HCAI系统。
translated by 谷歌翻译
人工智能(AI)的应用范围是巨大的,危害可能性也是如此。越来越愤怒地对来自AI系统的潜在风险产生了刺激行动,以解决这些风险,同时侵蚀对AI系统的信心以及发展它们的组织。 2019年研究发现了80多个出版和采用了“AI伦理原则”的组织,从此加入了更多。但原则往往会在“什么”和“如何”之间的差距和“如何”的差距。这样的差距已经启用可疑或道德可疑的行为,这促进了特定组织的可信度,更广泛地。因此,迫切需要允许AI开发人员防止伤害的具体方法,并允许他们通过可验证行为来证明其可靠性。下面,我们探索机制(从ARXIV:2004.07213绘制)创建一个生态系统,即AI开发人员可以获得信任 - 如果他们值得信赖。更好地评估开发商可信度,可以为用户选择,员工行动,投资决策,法律追索和新兴治理提供信息。制度。
translated by 谷歌翻译
随着全球人口越来越多的人口驱动世界各地的快速城市化,有很大的需要蓄意审议值得生活的未来。特别是,随着现代智能城市拥抱越来越多的数据驱动的人工智能服务,值得记住技术可以促进繁荣,福祉,城市居住能力或社会正义,而是只有当它具有正确的模拟补充时(例如竭尽全力,成熟机构,负责任治理);这些智能城市的最终目标是促进和提高人类福利和社会繁荣。研究人员表明,各种技术商业模式和特征实际上可以有助于极端主义,极化,错误信息和互联网成瘾等社会问题。鉴于这些观察,解决了确保了诸如未来城市技术基岩的安全,安全和可解释性的哲学和道德问题,以为未来城市的技术基岩具有至关重要的。在全球范围内,有能够更加人性化和以人为本的技术。在本文中,我们分析和探索了在人以人为本的应用中成功部署AI的安全,鲁棒性,可解释性和道德(数据和算法)挑战的关键挑战,特别强调这些概念/挑战的融合。我们对这些关键挑战提供了对现有文献的详细审查,并分析了这些挑战中的一个可能导致他人的挑战方式或帮助解决其他挑战。本文还建议了这些域的当前限制,陷阱和未来研究方向,以及如何填补当前的空白并导致更好的解决方案。我们认为,这种严谨的分析将为域名的未来研究提供基准。
translated by 谷歌翻译
过去十年已经看到人工智能(AI)的显着进展,这导致了用于解决各种问题的算法。然而,通过增加模型复杂性并采用缺乏透明度的黑匣子AI模型来满足这种成功。为了响应这种需求,已经提出了说明的AI(Xai)以使AI更透明,从而提高关键结构域中的AI。虽然有几个关于Xai主题的Xai主题的评论,但在Xai中发现了挑战和潜在的研究方向,这些挑战和研究方向被分散。因此,本研究为Xai组织的挑战和未来的研究方向提出了系统的挑战和未来研究方向:(1)基于机器学习生命周期的Xai挑战和研究方向,基于机器的挑战和研究方向阶段:设计,开发和部署。我们认为,我们的META调查通过为XAI地区的未来探索指导提供了XAI文学。
translated by 谷歌翻译
拟议的欧洲人工智能法案(AIA)是第一次尝试详细阐述由任何主要全球经济开展的AI一般法律框架。因此,AIA可能成为如何调节AI系统(应当)的更大话语中的参考点。在本文中,我们描述并讨论了AIA中提出的两项初级执法机制:高风险AI系统的提供者预计会进行的符合性评估,以及提供者必须建立履行表现的市场后监测计划在整个寿命中的高风险AI系统。我们认为,AIA可以被解释为建立欧洲审计的欧洲生态系统的建议,尽管换句话说。我们的分析提供了两个主要贡献。首先,通过描述从现有文献借入的AI审计中借用的AIA中包含的执法机制,我们帮助AI系统的提供者了解它们如何证明在实践中遵守AIA所示的要求。其次,通过从审计视角审查AIA,我们寻求提供以前研究如何进一步改进AIA中概述的监管方法的可转让教训。我们通过突出AIA的七个方面来结束修正案(或简单澄清)会有所帮助。最重要的是,需要将模糊概念转化为可验证标准,并加强基于内部支票的符合性评估的体制保障措施。
translated by 谷歌翻译
人工智能(AI)继续在金融服务业中寻找更多众多,更关键的应用,引起公平和道德的AI作为一种行业范围的目标。虽然近年来,许多道德原则和准则已经出版,但他们缺乏解决建立道德AI解决方案时开发商面临的严重挑战。我们调查了围绕模型开发的实用和总体问题,从设计和实施复杂,缺乏工具,缺乏组织结构。我们展示了实际考虑如何揭示高级原则和混凝土之间的差距,部署AI应用,目的是从行业范围的对话谈论解决方案方法。
translated by 谷歌翻译
已经开发出各种工具和实践来支持从业者识别,评估和减轻AI系统造成的公平相关危害。然而,现有研究突出了这些工具和实践的预期设计与特定背景下的使用之间的差距,包括由组织因素在塑造公平工作中发挥的作用引起的差距。在本文中,我们研究了一个这样的实践的这些差距:AI系统的分类评估,旨在揭示人口统计组之间的表现差异。通过在三个技术公司的十支队伍中进行半结构化访谈和三十三名艾尔从业人员,我们在设计分列的评估时,我们识别从业者的流程,挑战,并对支持的需求。我们发现从业者在选择绩效指标时面临挑战,识别最相关的直接利益相关者和在其上进行重点的人口统计集团,并收集其进行分类评估的数据集。更一般地说,我们识别对公平工作的影响,这些工作缺乏与直接利益相关者的订婚,优先考虑通过边缘化群体的客户,以及以规模部署AI系统的驱动器。
translated by 谷歌翻译
即将开发我们呼叫所体现的系统的新一代越来越自主和自学习系统。在将这些系统部署到真实上下文中,我们面临各种工程挑战,因为它以有益的方式协调所体现的系统的行为至关重要,确保他们与我们以人为本的社会价值观的兼容性,并且设计可验证安全可靠的人类-Machine互动。我们正在争辩说,引发系统工程将来自嵌入到体现系统的温室,并确保动态联合的可信度,这种情况意识到的情境意识,意图,探索,探险,不断发展,主要是不可预测的,越来越自主的体现系统在不确定,复杂和不可预测的现实世界环境中。我们还识别了许多迫切性的系统挑战,包括可信赖的体现系统,包括强大而人为的AI,认知架构,不确定性量化,值得信赖的自融化以及持续的分析和保证。
translated by 谷歌翻译
值得信赖的人工智能(AI)已成为一个重要的话题,因为在AI系统及其创造者中的信任已经丢失。研究人员,公司和政府具有远离技术开发,部署和监督的边缘化群体的长期和痛苦的历史。结果,这些技术对小群体的有用甚至有害。我们争辩说,渴望信任的任何AI开发,部署和监测框架必须纳入女权主义,非剥削参与性设计原则和强大,外部和持续监测和测试。我们还向考虑到透明度,公平性和问责制的可靠性方面的重要性,特别是考虑对任何值得信赖的AI系统的核心价值观的正义和转移权力。创建值得信赖的AI通过资金,支持和赋予Grassroots组织,如AI Queer等基层组织开始,因此AI领域具有多样性和纳入可信和有效地发展的可信赖AI。我们利用AI的专家知识Queer通过其多年的工作和宣传来讨论以及如何以及如何在数据集和AI系统中使用如何以及如何在数据集和AI系统中使用以及沿着这些线路的危害。基于此,我们分享了对AI的性别方法,进一步提出了Queer认识论并分析它可以带来AI的好处。我们还讨论了如何在愿景中讨论如何使用此Queer认识论,提出与AI和性别多样性和隐私和酷儿数据保护相关的框架。
translated by 谷歌翻译
虽然道德人工智能(AI)系统的需求增加,但AI加速的不道德使用的数量,即使没有道德准则不足。我们认为这是一个可能的潜在的原因是,AI开发人员在AI发展伦理中面临社会困境,防止了对道德最佳实践的广泛适应。我们为AI开发的社交困境定义了社会困境,并描述了为什么无法解决AI开发道德的当前危机,而无需缓解其社交困境的AI开发人员。我们认为AI开发必须专业为克服社会困境,并讨论如何在此过程中用作模板。
translated by 谷歌翻译
本文确定了数据驱动系统中的数据最小化和目的限制的两个核心数据保护原理。虽然当代数据处理实践似乎与这些原则的赔率达到差异,但我们证明系统可以在技术上使用的数据远远少于目前的数据。此观察是我们详细的技术法律分析的起点,揭示了妨碍了妨碍了实现的障碍,并举例说明了在实践中应用数据保护法的意外权衡。我们的分析旨在向辩论提供关于数据保护对欧盟人工智能发展的影响,为数据控制员,监管机构和研究人员提供实际行动点。
translated by 谷歌翻译
根据1,870家公司的Rackspace技术的最近调查,总共34%的AI研究和开发项目失败或被遗弃。我们提出了一项新的战略框架,Aistrom,使管理者基于彻底的文献综述,创建一个成功的AI战略。这提供了一种独特而综合的方法,可以通过实施过程中的各种挑战引导经理和牵头开发人员。在Aistrom框架中,我们首先识别顶部N潜在项目(通常为3-5)。对于每个人,彻底分析了七个重点区域。这些领域包括创建一个数据策略,以考虑独特的跨部门机器学习数据要求,安全性和法律要求。然后,Aistrom指导经理思考如何鉴于AI人才稀缺的跨学科人工智能(AI)实施团队。一旦建立了AI团队战略,它需要在组织内,跨部门或作为单独的部门定位。其他考虑因素包括AI作为服务(AIAAS)或外包开发。看着新技术,我们必须考虑偏见,黑匣子模型的合法性等挑战,并保持循环中的人类。接下来,与任何项目一样,我们需要基于价值的关键性能指标(KPI)来跟踪和验证进度。根据公司的风险策略,SWOT分析(优势,劣势,机会和威胁)可以帮助进一步分类入住项目。最后,我们应该确保我们的战略包括持续的雇员的持续教育,以实现采用文化。这种独特综合的框架提供了有价值的,经理和铅开发商的工具。
translated by 谷歌翻译
汽车行业在过去几十年中见证了越来越多的发展程度;从制造手动操作车辆到具有高自动化水平的制造车辆。随着近期人工智能(AI)的发展,汽车公司现在雇用BlackBox AI模型来使车辆能够感知其环境,并使人类少或没有输入的驾驶决策。希望能够在商业规模上部署自治车辆(AV),通过社会接受AV成为至关重要的,并且可能在很大程度上取决于其透明度,可信度和遵守法规的程度。通过为AVS行为的解释提供对这些接受要求的遵守对这些验收要求的评估。因此,解释性被视为AVS的重要要求。 AV应该能够解释他们在他们运作的环境中的“见到”。在本文中,我们对可解释的自动驾驶的现有工作体系进行了全面的调查。首先,我们通过突出显示并强调透明度,问责制和信任的重要性来开放一个解释的动机;并审查与AVS相关的现有法规和标准。其次,我们识别并分类了参与发展,使用和监管的不同利益相关者,并引出了AV的解释要求。第三,我们对以前的工作进行了严格的审查,以解释不同的AV操作(即,感知,本地化,规划,控制和系统管理)。最后,我们确定了相关的挑战并提供建议,例如AV可解释性的概念框架。该调查旨在提供对AVS中解释性感兴趣的研究人员所需的基本知识。
translated by 谷歌翻译
本文介绍了一种使用旨在解决现实世界应用中CDSS的低适用性和可扩展性问题的数据驱动的预测模型来构建一致和适用的临床决策支持系统(CDSS)的方法。该方法基于域特定和数据驱动的支持程序的三种特定于域和数据驱动的支持程序,该程序将被纳入临床业务流程,具有更高的信任和预测结果和建议的解释性。在考虑的三个阶段,监管策略,数据驱动模式和解释程序被集成,以实现与决策者的自然域特定的互动,具有智能决策支持焦点的连续缩小。该提出的方法能够实现更高水平的自动化,可扩展性和CDSS的语义解释性。该方法是在软件解决方案中实现的,并在T2DM预测中进行了测试,使我们能够改善已知的临床尺度(例如FindRisk),同时保持与现有应用程序类似的特定问题的推理界面。这种继承与三分阶段的方法一起提供了更高的解决方案兼容性,并导致数据驱动的解决方案在现实案件中的信任,有效和解释应用。
translated by 谷歌翻译
解释的人工智能(XAI)被视为制作AI系统更少黑匣子的解决方案。必须确保透明度,公平和问责制,这在金融部门特别倾向于普及。本研究的目的是初步调查监管机构和监管实体有关Xai在五公园部门的申请方面的观点。在荷兰的三家银行和两个监督当局在三家银行和两个监督当局使用半结构化访谈,检查了三种用例(消费者信贷,信用风险和反洗钱)。我们发现,对于调查的用例,监督机构和银行之间存在关于AI系统解释性的所需范围的差异。我们认为,金融部门可以从技术AI(型号)以外的可明确要求之间的明确差异中受益于更广泛的AI系统与适用法律法规的明确差异化。
translated by 谷歌翻译