由于使用特征提取过程中的每个框架,基于变压器的语音识别模型取得了巨大的成功。尤其是,下层中的SA头通过查询键点产品捕获了各种语音特性,该产品旨在计算帧之间的成对关系。在本文中,我们提出了一种SA的变体来提取更多代表性的语音特征。提出的语音自我注意力(PHSA)由两种不同类型的语音注意组成。一个是基于相似性的,另一个是基于内容的。简而言之,基于相似性的注意力捕获了帧之间的相关性,而基于内容的注意力仅考虑每个帧而不会受到其他帧影响。我们确定原始点产品方程的哪些部分与两种不同的注意力模式有关,并通过简单的修改改善每个部分。我们关于音素分类和语音识别的实验表明,用PHSA代替下层SA可改善识别性能,而无需增加延迟和参数大小。
translated by 谷歌翻译
注意层是现代端到端自动语音识别系统不可或缺的一部分,例如作为变压器或构象体体系结构的一部分。注意通常是多头的,每个头部都有一组独立的学习参数,并在相同的输入特征序列上运行。多头注意的输出是单个头部输出的融合。我们经验分析了不同注意力头部产生的表示之间的多样性,并证明在训练过程中头部高度相关。我们研究了一些增加注意力头多样性的方法,包括为每个头部使用不同的注意力机制和辅助训练损失功能来促进头部多样性。我们表明,在训练过程中引入多样性辅助损失功能是一种更有效的方法,并且在Librispeech语料库上获得了多达6%的相对相对的改善。最后,我们在注意力头的多样性与头部参数梯度的相似性之间建立了联系。
translated by 谷歌翻译
事实证明,构象异构体在许多语音处理任务中都是有效的。它结合了使用卷积和使用自我注意的全球依赖性提取本地依赖的好处。受此启发,我们提出了一个更灵活,可解释和可自定义的编码器替代方案,分支机构,并在端到端语音处理中对各种远程依赖关系进行建模。在每个编码器层中,一个分支都采用自我注意事项或其变体来捕获远程依赖性,而另一个分支则利用带有卷积门控(CGMLP)的MLP模块来提取局部关系。我们对几种语音识别和口语理解基准进行实验。结果表明,我们的模型优于变压器和CGMLP。它还与构象异构体获得的最先进结果相匹配。此外,由于两分支结构,我们展示了减少计算的各种策略,包括在单个训练有素的模型中具有可变的推理复杂性的能力。合并分支的权重表明如何在不同层中使用本地和全球依赖性,从而使模型设计受益。
translated by 谷歌翻译
最近,基于注意的编码器 - 解码器(AED)模型对多个任务的端到端自动语音识别(ASR)显示了高性能。在此类模型中解决了过度控制,本文介绍了轻松关注的概念,这是一种简单地逐渐注入对训练期间对编码器 - 解码器注意重量的统一分配,其易于用两行代码实现。我们调查轻松关注跨不同AED模型架构和两个突出的ASR任务,华尔街日志(WSJ)和LibRisPeech的影响。我们发现,在用外部语言模型解码时,随着宽松的注意力训练的变压器始终如一地始终如一地遵循标准基线模型。在WSJ中,我们为基于变压器的端到端语音识别设置了一个新的基准,以3.65%的单词错误率,最优于13.1%的相对状态,同时仅引入单个HyperParameter。
translated by 谷歌翻译
基于全注意力的变压器体系结构的强大建模能力通常会导致过度拟合,并且 - 对于自然语言处理任务,导致自动回归变压器解码器中隐式学习的内部语言模型,使外部语言模型的集成变得复杂。在本文中,我们探索了放松的注意力,对注意力的重量进行了简单易于实现的平滑平滑,从编码器。其次,我们表明它自然支持外部语言模型的整合,因为它通过放松解码器中的交叉注意来抑制隐式学习的内部语言模型。我们证明了在几项任务中放松注意力的好处,并与最近的基准方法相结合,并明显改善。具体而言,我们超过了最大的最大公共唇部阅读LRS3基准的26.90%单词错误率的先前最新性能,单词错误率为26.31%,并且我们达到了最佳表现的BLEU分数37.67在IWSLT14(de $ \ rightarrow $ en)的机器翻译任务没有外部语言模型,几乎没有其他模型参数。代码和模型将公开可用。
translated by 谷歌翻译
Transformers are among the state of the art for many tasks in speech, vision, and natural language processing, among others. Self-attentions, which are crucial contributors to this performance have quadratic computational complexity, which makes training on longer input sequences challenging. Prior work has produced state-of-the-art transformer variants with linear attention, however, current models sacrifice performance to achieve efficient implementations. In this work, we develop a novel linear transformer by examining the properties of the key-query product within self-attentions. Our model outperforms state of the art approaches on speech recognition and speech summarization, resulting in 1 % absolute WER improvement on the Librispeech-100 speech recognition benchmark and a new INTERVIEW speech recognition benchmark, and 5 points on ROUGE for summarization with How2.
translated by 谷歌翻译
Recently Transformer and Convolution neural network (CNN) based models have shown promising results in Automatic Speech Recognition (ASR), outperforming Recurrent neural networks (RNNs). Transformer models are good at capturing content-based global interactions, while CNNs exploit local features effectively. In this work, we achieve the best of both worlds by studying how to combine convolution neural networks and transformers to model both local and global dependencies of an audio sequence in a parameter-efficient way. To this regard, we propose the convolution-augmented transformer for speech recognition, named Conformer. Conformer significantly outperforms the previous Transformer and CNN based models achieving state-of-the-art accuracies. On the widely used LibriSpeech benchmark, our model achieves WER of 2.1%/4.3% without using a language model and 1.9%/3.9% with an external language model on test/testother. We also observe competitive performance of 2.7%/6.3% with a small model of only 10M parameters.
translated by 谷歌翻译
Recent trends of incorporating attention mechanisms in vision have led researchers to reconsider the supremacy of convolutional layers as a primary building block. Beyond helping CNNs to handle long-range dependencies, Ramachandran et al. (2019) showed that attention can completely replace convolution and achieve state-of-the-art performance on vision tasks. This raises the question: do learned attention layers operate similarly to convolutional layers? This work provides evidence that attention layers can perform convolution and, indeed, they often learn to do so in practice. Specifically, we prove that a multi-head self-attention layer with sufficient number of heads is at least as expressive as any convolutional layer. Our numerical experiments then show that self-attention layers attend to pixel-grid patterns similarly to CNN layers, corroborating our analysis. Our code is publicly available 1 .
translated by 谷歌翻译
我们提出了基于流的端到端自动语音识别(ASR)体系结构,该体系结构通过计算成本摊销来实现有效的神经推断。我们的体系结构在推理时间动态创建稀疏的计算途径,从而选择性地使用计算资源在整个解码过程中,从而使计算中的大幅降低,对准确性的影响最小。完全可区分的体系结构是端到端训练的,随附的轻巧仲裁器机制在帧级别运行,以在每个输入上做出动态决策,同时使用可调损耗函数来正规化针对预测性能的整体计算水平。我们使用在LiblisPeech数据上进行的计算摊销变压器变形器(T-T)模型报告了实验的经验结果。我们的最佳模型可以实现60%的计算成本降低,而相对单词错误率仅3%(WER)增加。
translated by 谷歌翻译
自我监督学习(SSL)在语音识别方面取得了巨大的成功,而有限的探索已尝试完成其他语音处理任务。由于语音信号包含多方面的信息,包括说话者身份,副语言学,口语内容等,学习所有语音任务的通用表示都具有挑战性。为了解决该问题,我们提出了一个新的预培训模型WAVLM,以解决全堆栈的下游语音任务。 Wavlm共同学习了蒙面的语音预测和预训练。通过这种方式,WAVLM不仅可以通过掩盖的语音预测来保持语音内容建模能力,而且还可以通过语音denoing来提高非ASR任务的潜力。此外,WAVLM还采用封闭式的变压器结构的封闭相对位置偏置,以更好地捕获输入语音的序列排序。我们还将培训数据集从60k小时扩展到94K小时。 WAVLM大型在精湛的基准上实现了最先进的性能,并在其代表性基准上为各种语音处理任务带来了重大改进。代码和预培训模型可在https://aka.ms/wavlm上找到。
translated by 谷歌翻译
视觉变压器(VIT)用作强大的视觉模型。与卷积神经网络不同,在前几年主导视觉研究,视觉变压器享有捕获数据中的远程依赖性的能力。尽管如此,任何变压器架构的组成部分,自我关注机制都存在高延迟和低效的内存利用,使其不太适合高分辨率输入图像。为了缓解这些缺点,分层视觉模型在非交错的窗口上局部使用自我关注。这种放松会降低输入尺寸的复杂性;但是,它限制了横窗相互作用,损害了模型性能。在本文中,我们提出了一种新的班次不变的本地注意层,称为查询和参加(QNA),其以重叠的方式聚集在本地输入,非常类似于卷积。 QNA背后的关键想法是介绍学习的查询,这允许快速高效地实现。我们通过将其纳入分层视觉变压器模型来验证我们的层的有效性。我们展示了速度和内存复杂性的改进,同时实现了与最先进的模型的可比准确性。最后,我们的图层尺寸尤其良好,窗口大小,需要高于X10的内存,而不是比现有方法更快。
translated by 谷歌翻译
端到端的口语理解(SLU)系统受益于大型语料库的预处理,然后对特定于应用程序的数据进行微调。最终的模型太大了,无法使用边缘应用。例如,基于BERT的系统包含超过1.1亿参数。观察模型过度参数化,我们提出了瘦变压器结构,其中使用组稀疏性自动降低了注意机制的维度。我们提出了一种变体,其中学习的注意子空间被转移到注意力瓶颈层。在低资源环境中,没有预先培训的情况下,由此产生的紧凑型SLU模型可与预训练的大型模型竞争精度。
translated by 谷歌翻译
基于语音的投入在我们日常生活中获得了智能手机和平板电脑的普及,因为声音是人类计算机交互的最简单而有效的方式。本文旨在设计更有效的基于语音的接口,以查询关系数据库中的结构化数据。我们首先识别名为Speep-to-SQL的新任务,旨在了解人类语音传达的信息,并直接将其转换为结构化查询语言(SQL)语句。对此问题的天真解决方案可以以级联方式工作,即,自动语音识别(ASR)组件,后跟文本到SQL组件。然而,它需要高质量的ASR系统,并且还遭受了两种组件之间的错误复合问题,从而产生有限的性能。为了处理这些挑战,我们进一步提出了一个名为SpeepSQLNET的新型端到端神经结构,直接将人类语音转化为没有外部ASR步骤的SQL查询。 SpeemSQLNET具有充分利用演讲中提供的丰富语言信息的优势。据我们所知,这是第一次尝试根据任意自然语言问题直接综合SQL,而不是基于自然语言的SQL版本或其具有有限的SQL语法的变体。为了验证所提出的问题和模型的有效性,我们还通过捎带广泛使用的文本到SQL数据集来进一步构建名为SpeemQL的数据集。对该数据集的广泛实验评估表明,SpeemSQLNET可以直接从人类语音中直接综合高质量的SQL查询,优于各种竞争对手,以及在精确匹配的准确性方面的级联方法。
translated by 谷歌翻译
大规模的语音自我监督学习(SSL)已经出现到语音处理的主要领域,但是,由于其巨大规模而引起的计算成本问题是对学术界的高障碍。此外,语音SSL模型的现有蒸馏技术通过减少层来压缩模型,从而在语言模式识别任务(例如音素识别(PR))中引起性能降解。在本文中,我们提出了Fithubert,它几乎在几乎所有模型组件中都使尺寸较薄,并且与先前的语音SSL蒸馏作品相比,层层更深。此外,我们采用缩短时间来加快推理时间,并提出一种基于提示的蒸馏方法,以减少性能降解。与休伯特相比,我们的方法将模型降低到23.8%,推理时间为35.9%。此外,我们在优越的基准上达到了12.1%的单词错误率和13.3%的音素错误率,这比先前的工作优越。
translated by 谷歌翻译
最近,先驱工作发现,演讲预训练模型可以解决全堆栈语音处理任务,因为该模型利用底层学习扬声器相关信息和顶层以编码与内容相关的信息。由于网络容量有限,我们认为如果模型专用于音频内容信息学习,则可以进一步提高语音识别性能。为此,我们向自我监督学习(ILS-SSL)提出中间层监督,这将模型通过在中间层上添加额外的SSL丢失来尽可能地专注于内容信息。 LibrisPeech测试 - 其他集合的实验表明,我们的方法显着优于Hubert,这实现了基数/大型模型的W / O语言模型设置的相对字错误率降低了23.5%/ 11.6%。详细分析显示我们模型的底层与拼音单元具有更好的相关性,这与我们的直觉一致,并解释了我们对ASR的方法的成功。
translated by 谷歌翻译
最近,变形金刚在图像分类中表现出巨大的潜力,并在ImageNet基准测试中建立了最先进的结果。然而,与CNN相比,变压器会缓慢收敛,并且由于缺乏空间电感偏见而容易过度拟合低数据。这种空间电感偏见可能特别有益,因为输入图像的2D结构在变压器中不能很好地保存。在这项工作中,我们提出了空间先验增强的自我注意力(SP-SA),这是为视觉变压器量身定制的香草自我注意力(SA)的新型变体。空间先验(SP)是我们提出的归纳偏见家族,突出了某些空间关系。与卷积归纳偏见不同,被迫专注于硬编码的地方区域,我们提出的SP是由模型本身学到的,并考虑了各种空间关系。具体而言,注意力评分是在每个头部都强调某些空间关系的重点,并且这种学识渊博的空间灶可以彼此互补。基于SP-SA,我们提出了SP-VIT家族,该家族始终优于其他具有相似GFLOPS或参数的VIT模型。我们最大的型号SP-VIT-L与以前的最新模型相比,参数数量降低了近50%(SP-VIT-L 150m VS 271M的CAIT-M-36)在所有Imagenet-1K模型中,在224x224训练,并在384x384分辨率上进行了微调,该分辨率带有额外的数据。
translated by 谷歌翻译
End-to-End automatic speech recognition (ASR) models aim to learn a generalised speech representation to perform recognition. In this domain there is little research to analyse internal representation dependencies and their relationship to modelling approaches. This paper investigates cross-domain language model dependencies within transformer architectures using SVCCA and uses these insights to exploit modelling approaches. It was found that specific neural representations within the transformer layers exhibit correlated behaviour which impacts recognition performance. Altogether, this work provides analysis of the modelling approaches affecting contextual dependencies and ASR performance, and can be used to create or adapt better performing End-to-End ASR models and also for downstream tasks.
translated by 谷歌翻译
基于变压器的语言模型利用注意机制在几乎所有自然语言处理(NLP)任务中进行大量绩效改进。在其他几个领域也广泛研究了类似的关注结构。尽管注意力机制可显着增强模型的性能,但其二次复杂性阻止了长序列的有效处理。最近的工作着重于消除计算效率低下的缺点,并表明基于变压器的模型仍然可以在没有注意力层的情况下达到竞争结果。一项开创性的研究提出了FNET,该研究将注意力层取代了变压器编码器体系结构中的傅立叶变换(FT)。 FNET通过消除注意机制的计算负担来加速训练过程,在加速训练过程的同时,实现了有关原始变压器编码器模型的竞争性能。但是,FNET模型忽略了FT的基本特性,可以利用经典信号处理,以进一步提高模型效率。我们提出了不同的方法,以有效地部署FT在变压器编码器模型中。我们提出的架构具有较少的模型参数,较短的培训时间,较少的内存使用情况以及一些额外的性能改进。我们通过对共同基准的广泛实验来证明这些改进。
translated by 谷歌翻译
Vision Transformers (ViTs) have become a dominant paradigm for visual representation learning with self-attention operators. Although these operators provide flexibility to the model with their adjustable attention kernels, they suffer from inherent limitations: (1) the attention kernel is not discriminative enough, resulting in high redundancy of the ViT layers, and (2) the complexity in computation and memory is quadratic in the sequence length. In this paper, we propose a novel attention operator, called lightweight structure-aware attention (LiSA), which has a better representation power with log-linear complexity. Our operator learns structural patterns by using a set of relative position embeddings (RPEs). To achieve log-linear complexity, the RPEs are approximated with fast Fourier transforms. Our experiments and ablation studies demonstrate that ViTs based on the proposed operator outperform self-attention and other existing operators, achieving state-of-the-art results on ImageNet, and competitive results on other visual understanding benchmarks such as COCO and Something-Something-V2. The source code of our approach will be released online.
translated by 谷歌翻译
视觉变压器(VIT)是计算机视野领域的主导模型。尽管大量研究主要关注处理归纳偏见和复杂性,但仍然存在找到更好的变压器网络的问题。例如,传统的基于变压器的模型通常使用每个查询(Q),键(k)和嵌入多头自我关注之前的键(k)和值(v)的投影层。对语义$ Q,K $和$ V $嵌入不充分考虑可能导致性能下降。在本文中,我们提出了3种$ Q $,k $和$ v $嵌入的三种类型的结构。第一个结构利用两个具有Relu的层,这是$ q,k $和$ v $的非线性嵌入。第二个涉及共享一个非线性层,以在$ q,k $和$ v $之间分享知识。第三种结构与代码参数共享所有非线性层。代码是培训的,值确定要在$ q $,$ k $和$ v $之间执行的嵌入过程。因此,与几种最先进的方法相比,我们展示了实验中提出的方法的优越图像分类性能。该方法在ImageNet-1K数据集中实现了71.4 \%$ 71.4 \%$ 71.4 \%$ xcit-n12的原始变压器模型所需的少数参数(3.1m $)($ 69.9 \%$)。此外,该方法达到了93.3 \%$ 29m $ 5.290万$参数,平均为CIFAR-10,CIFAR-100,斯坦福汽车数据集和STL-10数据集比为92.2 \%的准确性更好通过原始XCIT-N12模型获得$。
translated by 谷歌翻译