Template generation is a crucial step of groupwise image registration which deforms a group of subjects into a common space. Existing traditional and deep learning-based methods can generate high-quality template images. However, they suffer from substantial time costs or limited application scenarios like fixed group size. In this paper, we propose an efficient groupwise template generative framework based on variational autoencoder models utilizing the arithmetic property of latent representation of input images. We acquire the latent vectors of each input and use the average vector to construct the template through the decoder. Therefore, the method can be applied to groups of any scale. Secondly, we explore a siamese training scheme that feeds two images to the shared-weight twin networks and compares the distances between inputs and the generated template to prompt the template to be close to the implicit center. We conduct experiments on 3D brain MRI scans of groups of different sizes. Results show that our framework can achieve comparable and even better performance to baselines, with runtime decreased to seconds.
translated by 谷歌翻译
We present VoxelMorph, a fast learning-based framework for deformable, pairwise medical image registration. Traditional registration methods optimize an objective function for each pair of images, which can be time-consuming for large datasets or rich deformation models. In contrast to this approach, and building on recent learning-based methods, we formulate registration as a function that maps an input image pair to a deformation field that aligns these images. We parameterize the function via a convolutional neural network (CNN), and optimize the parameters of the neural network on a set of images. Given a new pair of scans, VoxelMorph rapidly computes a deformation field by directly evaluating the function. In this work, we explore two different training strategies. In the first (unsupervised) setting, we train the model to maximize standard image matching objective functions that are based on the image intensities. In the second setting, we leverage auxiliary segmentations available in the training data. We demonstrate that the unsupervised model's accuracy is comparable to state-of-the-art methods, while operating orders of magnitude faster. We also show that VoxelMorph trained with auxiliary data improves registration accuracy at test time, and evaluate the effect of training set size on registration. Our method promises to speed up medical image analysis and processing pipelines, while facilitating novel directions in learning-based registration and its applications. Our code is freely available at http://voxelmorph.csail.mit.edu.
translated by 谷歌翻译
图像注册广泛用于医学图像分析中,以提供两个图像之间的空间对应关系。最近提出了利用卷积神经网络(CNN)的基于学习的方法来解决图像注册问题。基于学习的方法往往比基于传统优化的方法快得多,但是从复杂的CNN方法中获得的准确性提高是适度的。在这里,我们介绍了一个新的基于深神经的图像注册框架,名为\ textbf {mirnf},该框架代表通过通过神经字段实现的连续函数的对应映射。 MIRNF输出的变形矢量或速度向量给定3D坐标为输入。为了确保映射是差异的,使用神经ODE求解器集成了MiRNF的速度矢量输出,以得出两个图像之间的对应关系。此外,我们提出了一个混合坐标采样器以及级联的体系结构,以实现高相似性映射性能和低距离变形场。我们对两个3D MR脑扫描数据集进行了实验,这表明我们提出的框架提供了最新的注册性能,同时保持了可比的优化时间。
translated by 谷歌翻译
基于深神经网络(DNN)的不确定性(基于DNN)的图像登记算法在部署图像注册算法中起着至关重要的作用在面向研究的处理管道中。目前可用的基于DNN的图像登记算法的不确定性估计方法可能导致临床决策,这是由于对注册的不确定性的潜在不准确估计源是对注册潜在空间的假定参数分布的源。我们引入了NPBDREG,这是一种完全非参数贝叶斯框架,通过将ADAM优化器与随机梯度Langevin Dynamics(SGLD)相结合,以通过后验通过后抽样将基于DNN的可变形图像注册中的不确定性估计。因此,它具有提供与出现未分布数据的存在高度相关的不确定性估计值。我们使用四个公开可用数据库中的$ 390 $图像对(MGH10,CMUC12,ISBR18和LPBA40)在Brain MRI图像配准上证明了NPBDREG的附加价值,与基线概率VoxelMorph模型(PRVXM)相比。 NPBDREG显示了预测不确定性与分布数据($ r> 0.95 $ vs. $ r <0.5 $)的更好相关性,并且注册准确性提高了7.3%(骰子得分,$ 0.74 $ vs。 $ 0.69 $,$ p \ ll 0.01 $),注册平滑度提高了18%(变形字段中的折叠百分比为0.014 vs. 0.017,$ p \ ll 0.01 $)。最后,与基线PRVXM方法相比,NPBDREG证明了由混合结构噪声损坏的数据(骰子得分为$ 0.73 $,$ 0.69 $,$ p \ ll 0.01 $)的概括能力更好。
translated by 谷歌翻译
Deformable image registration, i.e., the task of aligning multiple images into one coordinate system by non-linear transformation, serves as an essential preprocessing step for neuroimaging data. Recent research on deformable image registration is mainly focused on improving the registration accuracy using multi-stage alignment methods, where the source image is repeatedly deformed in stages by a same neural network until it is well-aligned with the target image. Conventional methods for multi-stage registration can often blur the source image as the pixel/voxel values are repeatedly interpolated from the image generated by the previous stage. However, maintaining image quality such as sharpness during image registration is crucial to medical data analysis. In this paper, we study the problem of anti-blur deformable image registration and propose a novel solution, called Anti-Blur Network (ABN), for multi-stage image registration. Specifically, we use a pair of short-term registration and long-term memory networks to learn the nonlinear deformations at each stage, where the short-term registration network learns how to improve the registration accuracy incrementally and the long-term memory network combines all the previous deformations to allow an interpolation to perform on the raw image directly and preserve image sharpness. Extensive experiments on both natural and medical image datasets demonstrated that ABN can accurately register images while preserving their sharpness. Our code and data can be found at https://github.com/anonymous3214/ABN
translated by 谷歌翻译
可变形图像配准是医学成像和计算机视觉的基本任务之一。经典登记算法通常依赖于迭代优化方法来提供准确的变形,这需要高计算成本。虽然已经开发了许多基于深度学习的方法来进行快速图像登记,但估计具有较少拓扑折叠问题的变形场仍然挑战。此外,这些方法仅使登记到单个固定图像,并且不可能在移动和固定图像之间获得连续变化的登记结果。为了解决这个问题,我们介绍了一种新的扩散模型的概率图像配准方法,称为DemageUseMorph。具体而言,我们的模型了解移动和固定图像之间变形的得分函数。类似于现有的扩散模型,DiffUsemorph不仅通过反向扩散过程提供合成变形图像,而且还使运动图像的各种水平与潜在的空间一起。在2D面部表达图像和3D脑图像登记任务上的实验结果表明,我们的方法可以通过拓扑保存能力提供灵活和准确的变形。
translated by 谷歌翻译
心肌运动和变形是表征心脏功能的丰富描述符。图像注册是心肌运动跟踪最常用的技术,是一个不当的反问题,通常需要先前对解决方案空间进行假设。与大多数现有的方法相反,它们强加了明确的通用正则化(例如平滑度),在这项工作中,我们提出了一种新的方法,该方法可以隐式地学习了特定于应用程序的生物力学知识,并将其嵌入了神经网络参数化转换模型中。尤其是,提出的方法利用基于变异自动编码器的生成模型来学习生物力学上合理变形的多种多样。然后,可以通过穿越学习的歧管来搜索最佳转换时,在考虑序列信息时搜索最佳转换。该方法在三个公共心脏Cine MRI数据集中进行了验证,并具有全面的评估。结果表明,所提出的方法可以胜过其他方法,从而获得更高的运动跟踪精度,并具有合理的量保存和更好地变化数据分布的概括性。它还可以更好地估计心肌菌株,这表明该方法在表征时空特征以理解心血管疾病方面的潜力。
translated by 谷歌翻译
Brain extraction and registration are important preprocessing steps in neuroimaging data analysis, where the goal is to extract the brain regions from MRI scans (i.e., extraction step) and align them with a target brain image (i.e., registration step). Conventional research mainly focuses on developing methods for the extraction and registration tasks separately under supervised settings. The performance of these methods highly depends on the amount of training samples and visual inspections performed by experts for error correction. However, in many medical studies, collecting voxel-level labels and conducting manual quality control in high-dimensional neuroimages (e.g., 3D MRI) are very expensive and time-consuming. Moreover, brain extraction and registration are highly related tasks in neuroimaging data and should be solved collectively. In this paper, we study the problem of unsupervised collective extraction and registration in neuroimaging data. We propose a unified end-to-end framework, called ERNet (Extraction-Registration Network), to jointly optimize the extraction and registration tasks, allowing feedback between them. Specifically, we use a pair of multi-stage extraction and registration modules to learn the extraction mask and transformation, where the extraction network improves the extraction accuracy incrementally and the registration network successively warps the extracted image until it is well-aligned with the target image. Experiment results on real-world datasets show that our proposed method can effectively improve the performance on extraction and registration tasks in neuroimaging data. Our code and data can be found at https://github.com/ERNetERNet/ERNet
translated by 谷歌翻译
可变形的图像注册对于许多医学图像分析是基础。准确图像注册的关键障碍在于图像外观变化,例如纹理,强度和噪声的变化。这些变化在医学图像中很明显,尤其是在经常使用注册的大脑图像中。最近,使用深神经网络的基于深度学习的注册方法(DLR)显示了计算效率,比基于传统优化的注册方法(ORS)快几个数量级。 DLR依靠一个全球优化的网络,该网络经过一组培训样本训练以实现更快的注册。但是,DLR倾向于无视ORS固有的目标对特异性优化,因此已经降低了对测试样品变化的适应性。这种限制对于注册出现较大的医学图像的限制是严重的,尤其是因为很少有现有的DLR明确考虑了外观的变化。在这项研究中,我们提出了一个外观调整网络(AAN),以增强DLR对外观变化的适应性。当我们集成到DLR中时,我们的AAN提供了外观转换,以减少注册过程中的外观变化。此外,我们提出了一个由解剖结构约束的损失函数,通过该函数,我们的AAN产生了解剖结构的转化。我们的AAN被目的设计为容易插入广泛的DLR中,并且可以以无监督和端到端的方式进行合作培训。我们用三个最先进的DLR评估了3D脑磁共振成像(MRI)的三个公共数据集(MRI)。结果表明,我们的AAN始终提高了现有的DLR,并且在注册精度上优于最先进的OR,同时向现有DLR增加了分数计算负载。
translated by 谷歌翻译
最近,已广泛研究了基于深度学习的方法,以进行可变形的图像注册任务。但是,大多数努力将复合图像表示形式直接映射到通过卷积神经网络的空间转换,而忽略了其捕获空间对应关系的有限能力。另一方面,变压器可以更好地表征与注意机制的空间关系,其远程依赖性可能对注册任务有害,在这种情况下,距离太大的体素不太可能是相应的对。在这项研究中,我们提出了一个新型的变形器模块,以及用于可变形图像配准任务的多尺度框架。变形器模块旨在通过将位移矢量预测作为几个碱基的加权总和来促进从图像表示到空间转换的映射。借助多尺度框架以粗略的方式预测位移字段,与传统和基于学习的方法相比,可以实现卓越的性能。进行了两个公共数据集的全面实验,以证明所提出的变形器模块以及多规模框架的有效性。
translated by 谷歌翻译
Unsupervised image registration commonly adopts U-Net style networks to predict dense displacement fields in the full-resolution spatial domain. For high-resolution volumetric image data, this process is however resource intensive and time-consuming. To tackle this problem, we propose the Fourier-Net, replacing the expansive path in a U-Net style network with a parameter-free model-driven decoder. Specifically, instead of our Fourier-Net learning to output a full-resolution displacement field in the spatial domain, we learn its low-dimensional representation in a band-limited Fourier domain. This representation is then decoded by our devised model-driven decoder (consisting of a zero padding layer and an inverse discrete Fourier transform layer) to the dense, full-resolution displacement field in the spatial domain. These changes allow our unsupervised Fourier-Net to contain fewer parameters and computational operations, resulting in faster inference speeds. Fourier-Net is then evaluated on two public 3D brain datasets against various state-of-the-art approaches. For example, when compared to a recent transformer-based method, i.e., TransMorph, our Fourier-Net, only using 0.22$\%$ of its parameters and 6.66$\%$ of the mult-adds, achieves a 0.6\% higher Dice score and an 11.48$\times$ faster inference speed. Code is available at \url{https://github.com/xi-jia/Fourier-Net}.
translated by 谷歌翻译
具有3D+T(4D)信息的时间体积图像通常用于医学成像中,以统计分析时间动力学或捕获疾病进展。尽管已经对自然图像的基于深度学习的生成模型进行了广泛的研究,但时间医学图像生成(例如4D心脏量数据)的方法受到限制。在这项工作中,我们提出了一个新颖的深度学习模型,该模型在源和目标体积之间产生了中间时间的体积。具体而言,我们通过调整最近对现实图像产生的非转化扩散概率模型来提出扩散可变形模型(DDM)。我们提出的DDM由扩散和变形模块组成,因此DDM可以在源和目标量之间学习空间变形信息,并提供潜在的代码,用于沿着测量路径生成中间帧。一旦训练了我们的模型,从扩散模块估算的潜在代码将简单地插入并馈入变形模块,该模块使DDM能够沿着连续轨迹生成时间帧,同时保留源图像的拓扑。我们证明了每个受试者舒张期和收缩期之间的4D心脏MR图像产生的提议方法。与现有的变形方法相比,我们的DDM在时间体积生成上实现了高性能。
translated by 谷歌翻译
在过去的十年中,卷积神经网络(Convnets)主导了医学图像分析领域。然而,发现脉搏的性能仍然可以受到它们无法模拟图像中体素之间的远程空间关系的限制。最近提出了众多视力变压器来解决哀悼缺点,在许多医学成像应用中展示最先进的表演。变压器可以是用于图像配准的强烈候选者,因为它们的自我注意机制能够更精确地理解移动和固定图像之间的空间对应。在本文中,我们呈现透射帧,一个用于体积医学图像配准的混合变压器-Cromnet模型。我们还介绍了三种变速器的变形,具有两个散晶变体,确保了拓扑保存的变形和产生良好校准的登记不确定性估计的贝叶斯变体。使用来自两个应用的体积医学图像的各种现有的登记方法和变压器架构进行广泛验证所提出的模型:患者间脑MRI注册和幻影到CT注册。定性和定量结果表明,传输和其变体导致基线方法的实质性改进,展示了用于医学图像配准的变压器的有效性。
translated by 谷歌翻译
通常需要对术前和术后大脑图像进行注册,以评估脑神经胶质瘤治疗的有效性。尽管最近基于深度学习的可变形注册方法在健康的大脑图像方面取得了显着的成功,但由于参考图像中缺乏对应关系,它们中的大多数人将无法与病理相处。在本文中,我们提出了一种基于深度学习的可变形登记方法,该方法共同估计缺乏对应关系和双向变形场的区域。前向后的一致性约束用于帮助从两个图像中缺乏对应关系的体素的切除和复发区域的定位。来自Brats-Reg挑战的3D临床数据的结果表明,与传统和深度学习的注册方法相比,我们的方法可以改善图像对齐方式,无论是否具有成本函数掩盖策略。源代码可在https://github.com/cwmok/dirac上获得。
translated by 谷歌翻译
我们介绍了一种基于梯度下降的图像登记网络(Gradirn),用于通过在深度学习框架中嵌入基于梯度的迭代能量最小化来学习可变形的图像配准。传统的图像登记算法通常使用迭代能量 - 最小化优化来查找一对图像之间的最佳变换,这在需要许多迭代时是耗时的。相比之下,基于学习的方法通过训练深神经网络来迁移这一昂贵的迭代优化,以便通过快速网络向前通过训练后可以实现一对图像的登记。通过图像重建技术的成功激励,与迭代变分能优化的数学结构相结合的深度学习,我们基于多分辨率梯度下降能量最小化制定新颖的登记网络。网络的前进通过通过卷积神经网络(CNN)参数化的显式图像相容梯度步骤和用于固定数量的迭代的卷积神经网络(CNN)。我们使用自我差异化来导出显式图像异化梯度W.r.t.的前向计算图。变换,因此可以在没有复杂和易于出错的梯度衍生的情况下使用任意图像相似度量和转换模型。我们证明,这种方法通过使用2D心动MR图像和3D脑MR图像使用更少的学习参数,在使用更少的学习参数时实现最先进的登记性能。
translated by 谷歌翻译
脑MRI图像的登记需要解决变形领域,这对于对准复杂的脑组织,例如皮质核等,这是极其困难的现有努力,该努力在具有微小运动的中间子场中分解目标变形领域,即逐步登记阶段或较低的分辨率,即全尺寸变形场的粗析估计。在本文中,我们认为这些努力不是相互排斥的,并为普通和粗良好的方式同时提出统一的脑MRI登记统一框架。具体地,在双编码器U-Net上构建,定制移动的MRI对被编码和解码成从粗略到精细的多尺度变形子字段。每个解码块包含两个提出的新颖模块:i)在变形场积分(DFI)中,计算单个集成子字段,翘曲,其等同于来自所有先前解码块的子字段逐渐翘曲,并且II)非刚性特征融合(NFF),固定移动对的特征由DFI集成子场对齐,然后融合以预测更精细的子场。利用DFI和NFF,目标变形字段被修改为多尺度子场,其中较粗糙的字段缓解了更精细的一个和更精细的字段的估计,以便构成以前粗糙的较粗糙的那些错位。私人和公共数据集的广泛和全面的实验结果展示了脑MRI图像的优越的登记性能,仅限于逐步登记和粗略估计,平均骰子的粗略估计数量在最多8%上升。
translated by 谷歌翻译
由于其极端的长距离建模能力,基于视觉变压器的网络在可变形图像注册中变得越来越流行。但是,我们认为,5层卷积U-NET的接受场足以捕获准确的变形而无需长期依赖性。因此,这项研究的目的是研究与现代变压器的方法相比,将基于U-NET的方法用于医学图像注册时是否已过时。为此,我们通过将平行的卷积块嵌入香草U-NET以增强有效的接受场来提出一个大核U-NET(LKU-NET)。在公共3D IXI Brain Dataset上,用于基于ATLAS的注册,我们表明,香草U-NET的性能已经与基于最新的变压器网络(例如Transmorph)相提并论,并且提出的LKU-NET仅使用其参数的1.12%和其多添加操作的10.8%,优于Transmorph。我们进一步评估了MICCAI Learn2Reg 2021挑战数据集中的LKU-NET,以进行主题间注册,我们的LKU-NET在此数据集中也优于TransMorph,并且在此工作提交后,在公共排行榜上排名第一。只有对香草U-NET的适度修改,我们表明U-NET可以在基于主体间和基于ATLAS的3D医疗图像注册上胜过基于变压器的体系结构。代码可在https://github.com/xi-jia/lku-net上找到。
translated by 谷歌翻译
创伤性脑损伤(TBI)患者的脑网络分析对于其意识水平评估和预后评估至关重要,这需要分割某些意识相关的大脑区域。但是,由于很难收集TBI患者的手动注释的MR扫描,因此很难构建TBI分割模型。数据增强技术可用于缓解数据稀缺问题。但是,常规数据增强策略(例如空间和强度转化)无法模仿创伤性大脑中的变形和病变,这限制了后续分割任务的性能。为了解决这些问题,我们提出了一种名为TBIGA的新型医学图像授课模型,以通过配对的脑标签图合成TBI MR扫描。我们的TBIGAN方法的主要优势在于,它可以同时生成TBI图像和相应的标签映射,这在以前的医学图像的先前涂上方法中尚未实现。我们首先按照粗到细节的方式在边缘信息的指导下生成成分的图像,然后将合成强度图像用作标签上填充的先验。此外,我们引入了基于注册的模板增强管道,以增加合成图像对的多样性并增强数据增强能力。实验结果表明,提出的TBIGAN方法可以产生具有高质量和有效标签图的足够合成的TBI图像,这可以大大改善与替代方案相比的2D和3D创伤性脑部分割性能。
translated by 谷歌翻译
可变形图像注册在医学图像分析的各种任务中起着至关重要的作用。从常规能源优化或深层网络中得出的成功的注册算法需要从计算机专家那里进行巨大努力来井设计注册能源,或者仔细调整特定类型的医疗数据类型的网络架构。为了解决上述问题,本文提出了一种自动学习注册算法(Autoreg),该算法(Autoreg)合作优化了建筑及其相应的培训目标,使非计算机专家,例如医疗/临床用户,以方便地查找现有的注册各种情况的算法。具体而言,我们建立了一个三级框架,以自动搜索机制和合作优化来推导注册网络体系结构和目标。我们对多站点卷数据集和各种注册任务进行图像注册实验。广泛的结果表明,我们的自动化可能会自动学习给定量的最佳深度注册网络并实现最先进的性能,也比主流UNET体系结构显着提高了计算效率(从0.558到0.558至0.270秒,对于3D图像对相同的配置)。
translated by 谷歌翻译
基于注册的Atlas Building经常在高维图像空间中造成计算挑战。在本文中,我们介绍了一种新的混合地图集建筑算法,该算法快速估计来自大规模图像数据集的图表,计算成本大大降低。与先前的方法相比,迭代地在估计的地图集和单个图像之间执行注册任务,我们建议使用从预先训练的神经网络的登记的学习前沿。这种新开发的混合框架具有(i)提供了一种有效的Atlas建筑工程,而不会失去结果的质量,以及(ii)在利用各种深度学习的注册方法提供灵活性。我们展示了这一提出模型对3D脑磁共振成像(MRI)扫描的有效性。
translated by 谷歌翻译