The goal of self-supervised learning from images is to construct image representations that are semantically meaningful via pretext tasks that do not require semantic annotations. Many pretext tasks lead to representations that are covariant with image transformations. We argue that, instead, semantic representations ought to be invariant under such transformations. Specifically, we develop Pretext-Invariant Representation Learning (PIRL, pronounced as "pearl") that learns invariant representations based on pretext tasks. We use PIRL with a commonly used pretext task that involves solving jigsaw puzzles. We find that PIRL substantially improves the semantic quality of the learned image representations. Our approach sets a new stateof-the-art in self-supervised learning from images on several popular benchmarks for self-supervised learning. Despite being unsupervised, PIRL outperforms supervised pre-training in learning image representations for object detection. Altogether, our results demonstrate the potential of self-supervised representations with good invariance properties.
translated by 谷歌翻译
Unsupervised image representations have significantly reduced the gap with supervised pretraining, notably with the recent achievements of contrastive learning methods. These contrastive methods typically work online and rely on a large number of explicit pairwise feature comparisons, which is computationally challenging. In this paper, we propose an online algorithm, SwAV, that takes advantage of contrastive methods without requiring to compute pairwise comparisons. Specifically, our method simultaneously clusters the data while enforcing consistency between cluster assignments produced for different augmentations (or "views") of the same image, instead of comparing features directly as in contrastive learning. Simply put, we use a "swapped" prediction mechanism where we predict the code of a view from the representation of another view. Our method can be trained with large and small batches and can scale to unlimited amounts of data. Compared to previous contrastive methods, our method is more memory efficient since it does not require a large memory bank or a special momentum network. In addition, we also propose a new data augmentation strategy, multi-crop, that uses a mix of views with different resolutions in place of two full-resolution views, without increasing the memory or compute requirements. We validate our findings by achieving 75.3% top-1 accuracy on ImageNet with ResNet-50, as well as surpassing supervised pretraining on all the considered transfer tasks.
translated by 谷歌翻译
对比度学习最近在无监督的视觉表示学习中显示出巨大的潜力。在此轨道中的现有研究主要集中于图像内不变性学习。学习通常使用丰富的图像内变换来构建正对,然后使用对比度损失最大化一致性。相反,相互影响不变性的优点仍然少得多。利用图像间不变性的一个主要障碍是,尚不清楚如何可靠地构建图像间的正对,并进一步从它们中获得有效的监督,因为没有配对注释可用。在这项工作中,我们提出了一项全面的实证研究,以更好地了解从三个主要组成部分的形象间不变性学习的作用:伪标签维护,采样策略和决策边界设计。为了促进这项研究,我们引入了一个统一的通用框架,该框架支持无监督的内部和间形内不变性学习的整合。通过精心设计的比较和分析,揭示了多个有价值的观察结果:1)在线标签收敛速度比离线标签更快; 2)半硬性样品比硬否定样品更可靠和公正; 3)一个不太严格的决策边界更有利于形象间的不变性学习。借助所有获得的食谱,我们的最终模型(即InterCLR)对多个标准基准测试的最先进的内图内不变性学习方法表现出一致的改进。我们希望这项工作将为设计有效的无监督间歇性不变性学习提供有用的经验。代码:https://github.com/open-mmlab/mmselfsup。
translated by 谷歌翻译
To date, most existing self-supervised learning methods are designed and optimized for image classification. These pre-trained models can be sub-optimal for dense prediction tasks due to the discrepancy between image-level prediction and pixel-level prediction. To fill this gap, we aim to design an effective, dense self-supervised learning method that directly works at the level of pixels (or local features) by taking into account the correspondence between local features. We present dense contrastive learning (DenseCL), which implements self-supervised learning by optimizing a pairwise contrastive (dis)similarity loss at the pixel level between two views of input images.Compared to the baseline method MoCo-v2, our method introduces negligible computation overhead (only <1% slower), but demonstrates consistently superior performance when transferring to downstream dense prediction tasks including object detection, semantic segmentation and instance segmentation; and outperforms the state-of-the-art methods by a large margin. Specifically, over the strong MoCo-v2 baseline, our method achieves significant improvements of 2.0% AP on PASCAL VOC object detection, 1.1% AP on COCO object detection, 0.9% AP on COCO instance segmentation, 3.0% mIoU on PASCAL VOC semantic segmentation and 1.8% mIoU on Cityscapes semantic segmentation.
translated by 谷歌翻译
Contrastive learning has become a key component of self-supervised learning approaches for computer vision. By learning to embed two augmented versions of the same image close to each other and to push the embeddings of different images apart, one can train highly transferable visual representations. As revealed by recent studies, heavy data augmentation and large sets of negatives are both crucial in learning such representations. At the same time, data mixing strategies, either at the image or the feature level, improve both supervised and semi-supervised learning by synthesizing novel examples, forcing networks to learn more robust features. In this paper, we argue that an important aspect of contrastive learning, i.e. the effect of hard negatives, has so far been neglected. To get more meaningful negative samples, current top contrastive self-supervised learning approaches either substantially increase the batch sizes, or keep very large memory banks; increasing memory requirements, however, leads to diminishing returns in terms of performance. We therefore start by delving deeper into a top-performing framework and show evidence that harder negatives are needed to facilitate better and faster learning. Based on these observations, and motivated by the success of data mixing, we propose hard negative mixing strategies at the feature level, that can be computed on-the-fly with a minimal computational overhead. We exhaustively ablate our approach on linear classification, object detection, and instance segmentation and show that employing our hard negative mixing procedure improves the quality of visual representations learned by a state-of-the-art self-supervised learning method.Project page: https://europe.naverlabs.com/mochi 34th Conference on Neural Information Processing Systems (NeurIPS 2020),
translated by 谷歌翻译
This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive selfsupervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by Sim-CLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-ofthe-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100× fewer labels. 1
translated by 谷歌翻译
Human observers can learn to recognize new categories of images from a handful of examples, yet doing so with artificial ones remains an open challenge. We hypothesize that data-efficient recognition is enabled by representations which make the variability in natural signals more predictable. We therefore revisit and improve Contrastive Predictive Coding, an unsupervised objective for learning such representations. This new implementation produces features which support state-of-theart linear classification accuracy on the ImageNet dataset. When used as input for non-linear classification with deep neural networks, this representation allows us to use 2-5× less labels than classifiers trained directly on image pixels. Finally, this unsupervised representation substantially improves transfer learning to object detection on the PASCAL VOC dataset, surpassing fully supervised pre-trained ImageNet classifiers.
translated by 谷歌翻译
We introduce Bootstrap Your Own Latent (BYOL), a new approach to self-supervised image representation learning. BYOL relies on two neural networks, referred to as online and target networks, that interact and learn from each other. From an augmented view of an image, we train the online network to predict the target network representation of the same image under a different augmented view. At the same time, we update the target network with a slow-moving average of the online network. While state-of-the art methods rely on negative pairs, BYOL achieves a new state of the art without them. BYOL reaches 74.3% top-1 classification accuracy on ImageNet using a linear evaluation with a ResNet-50 architecture and 79.6% with a larger ResNet. We show that BYOL performs on par or better than the current state of the art on both transfer and semi-supervised benchmarks. Our implementation and pretrained models are given on GitHub. 3 * Equal contribution; the order of first authors was randomly selected.
translated by 谷歌翻译
This paper presents Prototypical Contrastive Learning (PCL), an unsupervised representation learning method that bridges contrastive learning with clustering. PCL not only learns low-level features for the task of instance discrimination, but more importantly, it encodes semantic structures discovered by clustering into the learned embedding space. Specifically, we introduce prototypes as latent variables to help find the maximum-likelihood estimation of the network parameters in an Expectation-Maximization framework. We iteratively perform E-step as finding the distribution of prototypes via clustering and M-step as optimizing the network via contrastive learning. We propose ProtoNCE loss, a generalized version of the InfoNCE loss for contrastive learning, which encourages representations to be closer to their assigned prototypes. PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks with substantial improvement in low-resource transfer learning. Code and pretrained models are available at https://github.com/salesforce/PCL.
translated by 谷歌翻译
We present Momentum Contrast (MoCo) for unsupervised visual representation learning. From a perspective on contrastive learning [29] as dictionary look-up, we build a dynamic dictionary with a queue and a moving-averaged encoder. This enables building a large and consistent dictionary on-the-fly that facilitates contrastive unsupervised learning. MoCo provides competitive results under the common linear protocol on ImageNet classification. More importantly, the representations learned by MoCo transfer well to downstream tasks. MoCo can outperform its supervised pre-training counterpart in 7 detection/segmentation tasks on PASCAL VOC, COCO, and other datasets, sometimes surpassing it by large margins. This suggests that the gap between unsupervised and supervised representation learning has been largely closed in many vision tasks.
translated by 谷歌翻译
大规模数据集的预培训模型,如想象成,是计算机视觉中的标准实践。此范例对于具有小型培训套的任务特别有效,其中高容量模型往往会过度装备。在这项工作中,我们考虑一个自我监督的预训练场景,只能利用目标任务数据。我们考虑数据集,如斯坦福汽车,草图或可可,这是比想象成小的数量的顺序。我们的研究表明,在本文中介绍的Beit或诸如Beit或Variant的去噪对预训练数据的类型和大小比通过比较图像嵌入来训练的流行自我监督方法更加强大。我们获得了竞争性能与ImageNet预训练相比,来自不同域的各种分类数据集。在Coco上,当专注于使用Coco Images进行预训练时,检测和实例分割性能超过了可比设置中的监督Imagenet预训练。
translated by 谷歌翻译
使用超越欧几里德距离的神经网络,深入的Bregman分歧测量数据点的分歧,并且能够捕获分布的发散。在本文中,我们提出了深深的布利曼对视觉表现的对比学习的分歧,我们的目标是通过基于功能Bregman分歧培训额外的网络来提高自我监督学习中使用的对比损失。与完全基于单点之间的分歧的传统对比学学习方法相比,我们的框架可以捕获分布之间的发散,这提高了学习表示的质量。我们展示了传统的对比损失和我们提出的分歧损失优于基线的结合,并且最先前的自我监督和半监督学习的大多数方法在多个分类和对象检测任务和数据集中。此外,学习的陈述在转移到其他数据集和任务时概括了良好。源代码和我们的型号可用于补充,并将通过纸张释放。
translated by 谷歌翻译
Humans view the world through many sensory channels, e.g., the long-wavelength light channel, viewed by the left eye, or the high-frequency vibrations channel, heard by the right ear. Each view is noisy and incomplete, but important factors, such as physics, geometry, and semantics, tend to be shared between all views (e.g., a "dog" can be seen, heard, and felt). We investigate the classic hypothesis that a powerful representation is one that models view-invariant factors. We study this hypothesis under the framework of multiview contrastive learning, where we learn a representation that aims to maximize mutual information between different views of the same scene but is otherwise compact. Our approach scales to any number of views, and is viewagnostic. We analyze key properties of the approach that make it work, finding that the contrastive loss outperforms a popular alternative based on cross-view prediction, and that the more views we learn from, the better the resulting representation captures underlying scene semantics. Our approach achieves state-of-the-art results on image and video unsupervised learning benchmarks.
translated by 谷歌翻译
We present DetCo, a simple yet effective self-supervised approach for object detection. Unsupervised pre-training methods have been recently designed for object detection, but they are usually deficient in image classification, or the opposite. Unlike them, DetCo transfers well on downstream instance-level dense prediction tasks, while maintaining competitive image-level classification accuracy. The advantages are derived from (1) multi-level supervision to intermediate representations, (2) contrastive learning between global image and local patches. These two designs facilitate discriminative and consistent global and local representation at each level of feature pyramid, improving detection and classification, simultaneously.Extensive experiments on VOC, COCO, Cityscapes, and ImageNet demonstrate that DetCo not only outperforms recent methods on a series of 2D and 3D instance-level detection tasks, but also competitive on image classification. For example, on ImageNet classification, DetCo is 6.9% and 5.0% top-1 accuracy better than InsLoc and DenseCL, which are two contemporary works designed for object detection. Moreover, on COCO detection, DetCo is 6.9 AP better than SwAV with Mask R-CNN C4. Notably, DetCo largely boosts up Sparse R-CNN, a recent strong detector, from 45.0 AP to 46.5 AP (+1.5 AP), establishing a new SOTA on COCO. Code is available.
translated by 谷歌翻译
我们提出了一种适用于半全球任务的自学学习(SSL)方法,例如对象检测和语义分割。我们通过在训练过程中最大程度地减少像素级局部对比度(LC)损失,代表了同一图像转换版本的相应图像位置之间的局部一致性。可以将LC-LOSS添加到以最小开销的现有自我监督学习方法中。我们使用可可,Pascal VOC和CityScapes数据集评估了两个下游任务的SSL方法 - 对象检测和语义细分。我们的方法的表现优于现有的最新SSL方法可可对象检测的方法1.9%,Pascal VOC检测1.4%,而CityScapes Sementation则为0.6%。
translated by 谷歌翻译
Self-supervised learning aims to learn representations from the data itself without explicit manual supervision. Existing efforts ignore a crucial aspect of self-supervised learning -the ability to scale to large amount of data because self-supervision requires no manual labels. In this work, we revisit this principle and scale two popular selfsupervised approaches to 100 million images. We show that by scaling on various axes (including data size and problem 'hardness'), one can largely match or even exceed the performance of supervised pre-training on a variety of tasks such as object detection, surface normal estimation (3D) and visual navigation using reinforcement learning. Scaling these methods also provides many interesting insights into the limitations of current self-supervised techniques and evaluations. We conclude that current self-supervised methods are not 'hard' enough to take full advantage of large scale data and do not seem to learn effective high level semantic representations. We also introduce an extensive benchmark across 9 different datasets and tasks. We believe that such a benchmark along with comparable evaluation settings is necessary to make meaningful progress.
translated by 谷歌翻译
对比性自我监督表示方法学习方法最大程度地提高了正对之间的相似性,同时倾向于最大程度地减少负对之间的相似性。但是,总的来说,负面对之间的相互作用被忽略了,因为它们没有根据其特定差异和相似性而采用的特殊机制来对待负面对。在本文中,我们提出了扩展的动量对比(Xmoco),这是一种基于MOCO家族配置中提出的动量编码单元的遗产,一种自我监督的表示方法。为此,我们引入了交叉一致性正则化损失,并通过该损失将转换一致性扩展到不同图像(负对)。在交叉一致性正则化规则下,我们认为与任何一对图像(正或负)相关的语义表示应在借口转换下保留其交叉相似性。此外,我们通过在批处理上的负面对上实施相似性的均匀分布来进一步规范训练损失。可以轻松地将所提出的正规化添加到现有的自我监督学习算法中。从经验上讲,我们报告了标准Imagenet-1K线性头部分类基准的竞争性能。此外,通过将学习的表示形式转移到常见的下游任务中,我们表明,将Xmoco与普遍使用的增强功能一起使用可以改善此类任务的性能。我们希望本文的发现是研究人员考虑自我监督学习中负面例子的重要相互作用的动机。
translated by 谷歌翻译
对比的自我监督学习在很大程度上缩小了对想象成的预先训练的差距。然而,它的成功高度依赖于想象成的以对象形象,即相同图像的不同增强视图对应于相同的对象。当预先训练在具有许多物体的更复杂的场景图像上,如此重种策划约束会立即不可行。为了克服这一限制,我们介绍了对象级表示学习(ORL),这是一个新的自我监督的学习框架迈向场景图像。我们的主要洞察力是利用图像级自我监督的预培训作为发现对象级语义对应之前的,从而实现了从场景图像中学习的对象级表示。对Coco的广泛实验表明,ORL显着提高了自我监督学习在场景图像上的性能,甚至超过了在几个下游任务上的监督Imagenet预训练。此外,当可用更加解标的场景图像时,ORL提高了下游性能,证明其在野外利用未标记数据的巨大潜力。我们希望我们的方法可以激励未来的研究从场景数据的更多通用无人监督的代表。
translated by 谷歌翻译
最近自我监督学习成功的核心组成部分是裁剪数据增强,其选择要在自我监督损失中用作正视图的图像的子区域。底层假设是给定图像的随机裁剪和调整大小的区域与感兴趣对象的信息共享信息,其中学习的表示将捕获。这种假设在诸如想象网的数据集中大多满足,其中存在大,以中心为中心的对象,这很可能存在于完整图像的随机作物中。然而,在诸如OpenImages或Coco的其他数据集中,其更像是真实世界未保健数据的代表,通常存在图像中的多个小对象。在这项工作中,我们表明,基于通常随机裁剪的自我监督学习在此类数据集中表现不佳。我们提出用从对象提案算法获得的作物取代一种或两种随机作物。这鼓励模型学习对象和场景级别语义表示。使用这种方法,我们调用对象感知裁剪,导致对分类和对象检测基准的场景裁剪的显着改进。例如,在OpenImages上,我们的方法可以使用基于Moco-V2的预训练来实现8.8%的提高8.8%地图。我们还显示了对Coco和Pascal-Voc对象检测和分割任务的显着改善,通过最先进的自我监督的学习方法。我们的方法是高效,简单且通用的,可用于最现有的对比和非对比的自我监督的学习框架。
translated by 谷歌翻译
Self-supervised learning (SSL) is rapidly closing BARLOW TWINS is competitive with state-of-the-art methods for self-supervised learning while being conceptually simpler, naturally avoiding trivial constant (i.e. collapsed) embeddings, and being robust to the training batch size.
translated by 谷歌翻译