深度完成处理从稀疏的问题恢复密集深度映射,其中彩色图像通常用于促进此任务。最近的方法主要集中在图像引导学习中预测致密结果。然而,图像中的模糊引导和深度不明确的结构仍然妨碍了图像引导框架的性能。灵感来自于观察和思考的流行机制两次,我们探讨了我们的图像引导网络中的重复设计逐渐恢复了深度值。具体地,重复体现在图像引导分支和深度生成分支中。在前一个分支中,我们设计了一种重复的沙漏网络,以提取复杂环境的判别图像特征,这可以为深度预测提供强大的上下文指导。在后一分支中,我们介绍了一种基于动态卷积的重复引导模块,其中提出了高效的卷积分解,以同时降低其复杂性和逐步模型的高频结构。广泛的实验表明,我们的方法在基蒂基准和NYUV2数据集上实现了最先进的结果。
translated by 谷歌翻译
深度完成旨在预测从深度传感器(例如Lidars)中捕获的极稀疏图的密集像素深度。它在各种应用中起着至关重要的作用,例如自动驾驶,3D重建,增强现实和机器人导航。基于深度学习的解决方案已经证明了这项任务的最新成功。在本文中,我们首次提供了全面的文献综述,可帮助读者更好地掌握研究趋势并清楚地了解当前的进步。我们通过通过对现有方法进行分类的新型分类法提出建议,研究网络体系结构,损失功能,基准数据集和学习策略的设计方面的相关研究。此外,我们在包括室内和室外数据集(包括室内和室外数据集)上进行了三个广泛使用基准测试的模型性能进行定量比较。最后,我们讨论了先前作品的挑战,并为读者提供一些有关未来研究方向的见解。
translated by 谷歌翻译
在本文中,我们制定了一个潜在的有价值的全景深度完成(PDC)任务,因为全景3D摄像机通常会产生360 {\ deg}深度,而在复杂场景中缺少数据。它的目标是从原始的稀疏图像和全景RGB图像中恢复密集的全景深度。为了处理PDC任务,我们训练一个深度网络,该网络将深度和图像作为密集的全景深度恢复的输入。但是,由于其非凸目标函数,它需要面对网络参数的具有挑战性的优化问题。为了解决这个问题,我们提出了一种简单而有效的方法,称为m {^3} pt:多模式掩盖的预训练。具体而言,在预训练期间,我们同时覆盖了全景RGB图像和通过共享随机掩码的稀疏深度的斑块,然后重建掩盖区域中的稀疏深度。据我们所知,这是我们第一次在多模式视觉任务中展示蒙版预训练的有效性,而不是蒙版自动编码器(MAE)解决的单模式任务。与MAE进行微调完全丢弃了预训练的解码器部分,在我们的M $^{3} $ pt中的预训练和微调阶段之间没有建筑差异,因为它们在预测密度方面只有不同,这有可能使转移学习更加方便和有效。广泛的实验验证了三个全景数据集上M {^3} PT的有效性。值得注意的是,我们在RMSE中平均将最先进的基线提高了26.2%,MRE的51.7%,MAE为49.7%,在三个基准数据集中将RMSelog的RMSelog在37.5%中提高了37.5%。
translated by 谷歌翻译
Our long term goal is to use image-based depth completion to quickly create 3D models from sparse point clouds, e.g. from SfM or SLAM. Much progress has been made in depth completion. However, most current works assume well distributed samples of known depth, e.g. Lidar or random uniform sampling, and perform poorly on uneven samples, such as from keypoints, due to the large unsampled regions. To address this problem, we extend CSPN with multiscale prediction and a dilated kernel, leading to much better completion of keypoint-sampled depth. We also show that a model trained on NYUv2 creates surprisingly good point clouds on ETH3D by completing sparse SfM points.
translated by 谷歌翻译
随着稀疏TOF传感器在移动设备中的广泛应用,RGB图像引导的稀疏深度完成最近引起了广泛的关注,但仍然面临一些问题。首先,多模式信息的融合需要更多的网络模块来处理不同的模式。但是,稀疏TOF测量的应用方案通常需要轻巧的结构和低计算成本。其次,将稀疏和嘈杂的深度数据与密集像素的RGB数据融合可能会引入伪影。在本文中,提出了一个光线但有效的深度完成网络,该网络由两个分支的全球和局部深度预测模块和漏斗卷积空间传播网络组成。两分支结构的提取和融合具有轻质骨架的横模特征。改进的空间传播模块可以逐渐完善完整的深度图。此外,针对深度完成问题提出了校正后的梯度损失。实验结果表明,所提出的方法可以胜过一些具有轻量级体系结构的最先进方法。提出的方法还赢得了MIPI2022 RGB+TOF深度完成挑战的冠军。
translated by 谷歌翻译
深度映射记录场景中的视点和对象之间的距离,这在许多真实应用程序中起着关键作用。然而,消费者级RGB-D相机捕获的深度图遭受了低空间分辨率。引导深度地图超分辨率(DSR)是解决此问题的流行方法,该方法试图从输入的低分辨率(LR)深度及其耦合的HR RGB图像中恢复高分辨率(HR)深度映射和作为指引。引导DSR最具挑战性的问题是如何正确选择一致的结构并传播它们,并正确处理不一致的结构。在本文中,我们提出了一种用于引导DSR的新型关注的分层多模态融合(AHMF)网络。具体地,为了有效地提取和组合来自LR深度和HR引导的相关信息,我们提出了一种基于多模态注意力的融合(MMAF)策略,包括分层卷积层,包括特征增强块,以选择有价值的功能和特征重新校准块来统一不同外观特征的方式的相似性度量。此外,我们提出了一个双向分层特征协作(BHFC)模块,以完全利用多尺度特征之间的低级空间信息和高级结构信息。实验结果表明,在重建精度,运行速度和记忆效率方面,我们的方法优于最先进的方法。
translated by 谷歌翻译
We present a novel depth completion approach agnostic to the sparsity of depth points, that is very likely to vary in many practical applications. State-of-the-art approaches yield accurate results only when processing a specific density and distribution of input points, i.e. the one observed during training, narrowing their deployment in real use cases. On the contrary, our solution is robust to uneven distributions and extremely low densities never witnessed during training. Experimental results on standard indoor and outdoor benchmarks highlight the robustness of our framework, achieving accuracy comparable to state-of-the-art methods when tested with density and distribution equal to the training one while being much more accurate in the other cases. Our pretrained models and further material are available in our project page.
translated by 谷歌翻译
引导过滤器是计算机视觉和计算机图形中的基本工具,旨在将结构信息从引导图像传输到目标图像。大多数现有方法构造来自指导本身的滤波器内核,而不考虑指导和目标之间的相互依赖性。然而,由于两种图像中通常存在显着不同的边沿,只需将引导的所有结构信息传送到目标即将导致各种伪像。要应对这个问题,我们提出了一个名为Deep Enterponal引导图像过滤的有效框架,其过滤过程可以完全集成两个图像中包含的互补信息。具体地,我们提出了一种注意力内核学习模块,分别从引导和目标生成双组滤波器内核,然后通过在两个图像之间建模像素方向依赖性来自适应地组合它们。同时,我们提出了一种多尺度引导图像滤波模块,以粗略的方式通过所构造的内核逐渐产生滤波结果。相应地,引入了多尺度融合策略以重用中间导点在粗略的过程中。广泛的实验表明,所提出的框架在广泛的引导图像滤波应用中,诸如引导超分辨率,横向模态恢复,纹理拆除和语义分割的最先进的方法。
translated by 谷歌翻译
自我监督的学习已经为单眼深度估计显示出非常有希望的结果。场景结构和本地细节都是高质量深度估计的重要线索。最近的作品遭受了场景结构的明确建模,并正确处理细节信息,这导致了预测结果中的性能瓶颈和模糊人工制品。在本文中,我们提出了具有两个有效贡献的通道 - 明智的深度估计网络(Cadepth-Net):1)结构感知模块采用自我关注机制来捕获远程依赖性并聚合在信道中的识别特征尺寸,明确增强了场景结构的感知,获得了更好的场景理解和丰富的特征表示。 2)细节强调模块重新校准通道 - 方向特征映射,并选择性地强调信息性功能,旨在更有效地突出至关重要的本地细节信息和熔断器不同的级别功能,从而更精确,更锐化深度预测。此外,广泛的实验验证了我们方法的有效性,并表明我们的模型在基蒂基准和Make3D数据集中实现了最先进的结果。
translated by 谷歌翻译
感觉到航天器的三维(3D)结构是成功执行许多轨道空间任务的先决条件,并且可以为许多下游视觉算法提供关键的输入。在本文中,我们建议使用光检测和范围传感器(LIDAR)和单眼相机感知航天器的3D结构。为此,提出了航天器深度完成网络(SDCNET),以根据灰色图像和稀疏深度图回收密集的深度图。具体而言,SDCNET将对象级航天器的深度完成任务分解为前景分割子任务和前景深度完成子任务,该任务首先将航天器区域划分,然后在段前景区域执行深度完成。这样,有效地避免了对前景航天器深度完成的背景干扰。此外,还提出了一个基于注意力的特征融合模块,以汇总不同输入之间的互补信息,该信息可以按顺序推论沿通道沿着不同特征和空间维度之间的相关性。此外,还提出了四个指标来评估对象级的深度完成性能,这可以更直观地反映航天器深度完成结果的质量。最后,构建了一个大规模的卫星深度完成数据集,用于培训和测试航天器深度完成算法。数据集上的经验实验证明了拟议的SDCNET的有效性,该SDCNET达到了0.25亿的平均绝对误差和0.759m的平均绝对截断误差,并通过较大的边缘超过了前期方法。航天器姿势估计实验也基于深度完成结果进行,实验结果表明,预测的密集深度图可以满足下游视觉任务的需求。
translated by 谷歌翻译
对于单眼360图像,深度估计是一个具有挑战性的,因为失真沿纬度增加。为了感知失真,现有方法致力于设计深层且复杂的网络体系结构。在本文中,我们提供了一种新的观点,该视角为360图像构建了可解释且稀疏的表示形式。考虑到几何结构在深度估计中的重要性,我们利用Contourlet变换来捕获光谱域中的显式几何提示,并将其与空间域中的隐含提示集成在一起。具体而言,我们提出了一个由卷积神经网络和Contourlet变换分支组成的神经轮廓网络。在编码器阶段,我们设计了一个空间光谱融合模块,以有效融合两种类型的提示。与编码器相反,我们采用了逆向方形变换,并通过学习的低通子带和带通道的定向子带来构成解码器中的深度。在三个流行的全景图像数据集上进行的实验表明,所提出的方法的表现优于最先进的方案,其收敛速度更快。代码可在https://github.com/zhijieshen-bjtu/neural-contourlet-network-for-mode上找到。
translated by 谷歌翻译
整体场景的理解对于自动机器的性能至关重要。在本文中,我们提出了一个新的端到端模型,用于共同执行语义细分和深度完成。最近的绝大多数方法已发展为独立任务的语义细分和深度完成。我们的方法取决于RGB和稀疏深度作为我们模型的输入,并产生密集的深度图和相应的语义分割图像。它由特征提取器,深度完成分支,语义分割分支和联合分支组成,该分支进一步处理语义和深度信息。在Virtual Kitti 2数据集上进行的实验,证明并提供了进一步的证据,即在多任务网络中将两个任务,语义细分和深度完成都结合在一起,可以有效地提高每个任务的性能。代码可从https://github.com/juanb09111/smantic Depth获得。
translated by 谷歌翻译
自我监督的单眼深度预测提供了一种经济有效的解决方案,以获得每个像素的3D位置。然而,现有方法通常会导致不满意的准确性,这对于自治机器人至关重要。在本文中,我们提出了一种新的两级网络,通过利用低成本稀疏(例如4梁)LIDAR来推进自我监督单眼密集深度学习。与使用稀疏激光雷达的现有方法不同,主要以耗时的迭代后处理,我们的模型保留单眼图像特征和稀疏的LIDAR功能,以预测初始深度图。然后,有效的前馈细化网络进一步设计为校正伪3D空间中这些初始深度图中的错误,其具有实时性能。广泛的实验表明,我们所提出的模型显着优于所有最先进的自我监控方法,以及基于稀疏的激光器的方法,以及对自我监督单眼深度预测和完成任务。通过精确的密集深度预测,我们的模型优于基于最先进的稀疏激光雷达的方法(伪LIDAR ++)在Kitti排行榜上下游任务单眼3D对象检测超过68%。代码可在https://github.com/autoailab/fusiondepth获得
translated by 谷歌翻译
由于可靠的3D空间信息,LIDAR传感器广泛用于自动驾驶。然而,LIDAR的数据稀疏,LIDAR的频率低于相机的频率。为了在空间和时间上生成密集点云,我们提出了第一个将来的伪激光框架预测网络。鉴于连续稀疏深度图和RGB图像,我们首先根据动态运动信息粗略地预测未来的密集深度图。为了消除光流量估计的误差,提出了帧间聚合模块,以使具有自适应权重的翘曲深度图熔断。然后,我们使用静态上下文信息优化预测的密集深度图。通过将预测的密集深度图转换为相应的3D点云,可以获得未来的伪激光镜帧。实验结果表明,我们的方法优于流行基准基准的现有解决方案。
translated by 谷歌翻译
深度估计是近年来全景图像3D重建的关键步骤。 Panorama图像保持完整的空间信息,但与互联的投影引入失真。在本文中,我们提出了一种基于自适应组合扩张的卷积的ACDNet,以预测单眼地全景图像的密集深度图。具体地,我们将卷积核与不同的扩张相结合,以延长昼夜投影中的接收领域。同时,我们介绍了一个自适应渠道 - 明智的融合模块,总结了特征图,并在频道的接收领域中获得不同的关注区域。由于利用通道的注意力构建自适应通道 - 明智融合模块,网络可以有效地捕获和利用跨通道上下文信息。最后,我们对三个数据集(虚拟和现实世界)进行深度估计实验,实验结果表明,我们所提出的ACDNET基本上优于当前的最先进(SOTA)方法。我们的代码和模型参数在https://github.com/zcq15/acdnet中访问。
translated by 谷歌翻译
编码器 - 解码器模型已广泛用于RGBD语义分割,并且大多数通过双流网络设计。通常,共同推理RGBD的颜色和几何信息是有益的对语义分割。然而,大多数现有方法都无法全面地利用编码器和解码器中的多模式信息。在本文中,我们提出了一种用于RGBD语义细分的新型关注的双重监督解码器。在编码器中,我们设计一个简单但有效的关注的多模式融合模块,以提取和保险丝深度多级成对的互补信息。要了解更强大的深度表示和丰富的多模态信息,我们介绍了一个双分支解码器,以有效利用不同任务的相关性和互补线。在Nyudv2和Sun-RGBD数据集上的广泛实验表明,我们的方法达到了最先进的方法的卓越性能。
translated by 谷歌翻译
最近,融合了激光雷达点云和相机图像,提高了3D对象检测的性能和稳健性,因为这两种方式自然具有强烈的互补性。在本文中,我们通过引入新型级联双向融合〜(CB融合)模块和多模态一致性〜(MC)损耗来提出用于多模态3D对象检测的EPNet ++。更具体地说,所提出的CB融合模块提高点特征的丰富语义信息,以级联双向交互融合方式具有图像特征,导致更全面且辨别的特征表示。 MC损失明确保证预测分数之间的一致性,以获得更全面且可靠的置信度分数。基蒂,JRDB和Sun-RGBD数据集的实验结果展示了通过最先进的方法的EPNet ++的优越性。此外,我们强调一个关键但很容易被忽视的问题,这是探讨稀疏场景中的3D探测器的性能和鲁棒性。广泛的实验存在,EPNet ++优于现有的SOTA方法,在高稀疏点云壳中具有显着的边距,这可能是降低LIDAR传感器的昂贵成本的可用方向。代码将来会发布。
translated by 谷歌翻译
随着移动设备的快速开发,现代使用的手机通常允许用户捕获4K分辨率(即超高定义)图像。然而,对于图像进行示范,在低级视觉中,一项艰巨的任务,现有作品通常是在低分辨率或合成图像上进行的。因此,这些方法对4K分辨率图像的有效性仍然未知。在本文中,我们探索了Moire模式的删除,以进行超高定义图像。为此,我们提出了第一个超高定义的演示数据集(UHDM),其中包含5,000个现实世界4K分辨率图像对,并对当前最新方法进行基准研究。此外,我们提出了一个有效的基线模型ESDNET来解决4K Moire图像,其中我们构建了一个语义对准的比例感知模块来解决Moire模式的尺度变化。广泛的实验表明了我们的方法的有效性,这可以超过最轻巧的优于最先进的方法。代码和数据集可在https://xinyu-andy.github.io/uhdm-page上找到。
translated by 谷歌翻译
神经网络的高计算成本阻止了RGB-D突出物体检测(SOD)的最新成功,从受益现实世界应用。因此,本文介绍了一种新颖的网络,Mobily,它专注于使用移动网络进行深度特征提取的高效RGB-D SOD。然而,移动网络在特征表示中的功能较小比麻烦的网络更强大。为此,我们观察到彩色图像的深度信息可以加强与SOD相关的特征表示,如果正确杠杆。因此,我们提出了一种隐式深度恢复(IDR)技术,以加强用于RGB-D SOD的移动网络的特征表示能力。 IDR仅在训练阶段采用并在测试期间省略,因此它是免费的。此外,我们提出了用于有效的多级特征聚合的紧凑金字塔精制(CPR),以获得具有清晰边界的突出对象。与IDR和CPR合并,Mobilesal在六个挑战RGB-D SOD数据集上具有更快的速度(450fps 320 $ 320的输入尺寸为320美元)和更少的参数(6.5米)。代码在https://mmcheng.net/mobilesal发布。
translated by 谷歌翻译
随着现代建筑倾向于使用大量玻璃面板,玻璃表面变得越来越无处不在。然而,这对机器人,自动驾驶汽车和无人机等自主系统的运营构成了重大挑战,因为玻璃板可能会成为导航的透明障碍。存在的工作试图利用各种线索,包括玻璃边界上下文或反思,例如先验。但是,它们都是基于输入RGB图像的。我们观察到3D深度传感器光线通过玻璃表面的传输通常会在深度图中产生空白区域,这可以提供其他见解以补充RGB图像特征以进行玻璃表面检测。在本文中,我们通过将RGB-D信息合并到两个新型模块中提出了一个新颖的玻璃表面检测框架:(1)一个跨模式环境挖掘(CCM)模块,以适应从RGB和深度学习个人和相互的上下文特征信息,以及(2)深度失误的注意力(DAA)模块,以明确利用空间位置,在这些空间位置存在缺失的深度以帮助检测玻璃表面的存在。此外,我们提出了一个大规模的RGB-D玻璃表面检测数据集,称为\ textit {RGB-D GSD},用于RGB-D玻璃表面检测。我们的数据集包含3,009个现实世界的RGB-D玻璃表面图像,并具有精确的注释。广泛的实验结果表明,我们提出的模型优于最先进的方法。
translated by 谷歌翻译