类激活图(CAM)有助于制定显着图,有助于解释深度神经网络的预测。基于梯度的方法通常比视力解释性的其他分支更快,并且独立于人类的指导。类似CAM的研究的性能取决于管理模型的层响应以及梯度的影响。典型的面向梯度的CAM研究依赖加权聚合来进行显着图估计,通过将梯度图投影到单权重值中,这可能导致过度的广义显着图。为了解决此问题,我们使用全球指导图来纠正显着性估计过程中加权聚合操作,在这种情况下,结果解释是相对干净的ER且特定于实例的。我们通过在特征图及其相应的梯度图之间执行元素乘法来获得全局引导图。为了验证我们的研究,我们将拟议的研究与八个不同的显着性可视化器进行了比较。此外,我们使用七个常用的评估指标进行定量比较。提出的方案比ImageNet,MS-Coco 14和Pascal VOC 2012数据集的测试图像取得了重大改进。
translated by 谷歌翻译
Deep neural networks are being used increasingly to automate data analysis and decision making, yet their decision-making process is largely unclear and is difficult to explain to the end users. In this paper, we address the problem of Explainable AI for deep neural networks that take images as input and output a class probability. We propose an approach called RISE that generates an importance map indicating how salient each pixel is for the model's prediction. In contrast to white-box approaches that estimate pixel importance using gradients or other internal network state, RISE works on blackbox models. It estimates importance empirically by probing the model with randomly masked versions of the input image and obtaining the corresponding outputs. We compare our approach to state-of-the-art importance extraction methods using both an automatic deletion/insertion metric and a pointing metric based on human-annotated object segments. Extensive experiments on several benchmark datasets show that our approach matches or exceeds the performance of other methods, including white-box approaches.
translated by 谷歌翻译
在几个机器学习应用领域,包括可解释的AI和弱监督的对象检测和细分,高质量的显着性图至关重要。已经开发了许多技术来使用神经网络提高显着性。但是,它们通常仅限于特定的显着性可视化方法或显着性问题。我们提出了一种新型的显着性增强方法,称为SESS(通过缩放和滑动增强显着性)。这是对现有显着性图生成方法的方法和模型不可或缺的扩展。借助SESS,现有的显着性方法变得稳健,可在尺度差异,目标对象的多次出现,分散器的存在以及产生较少的嘈杂和更具歧视性显着性图。 SESS通过从不同区域的不同尺度上从多个斑块中提取的显着图来提高显着性,并使用新型的融合方案结合了这些单独的地图,该方案结合了通道的重量和空间加权平均值。为了提高效率,我们引入了一个预过滤步骤,该步骤可以排除非信息显着图以提高效率,同时仍提高整体结果。我们在对象识别和检测基准上评估SESS可以取得重大改进。该守则公开发布以使研究人员能够验证绩效和进一步发展。代码可用:https://github.com/neouyghur/sess
translated by 谷歌翻译
Recently, increasing attention has been drawn to the internal mechanisms of convolutional neural networks, and the reason why the network makes specific decisions. In this paper, we develop a novel post-hoc visual explanation method called Score-CAM based on class activation mapping. Unlike previous class activation mapping based approaches, Score-CAM gets rid of the dependence on gradients by obtaining the weight of each activation map through its forward passing score on target class, the final result is obtained by a linear combination of weights and activation maps. We demonstrate that Score-CAM achieves better visual performance and fairness for interpreting the decision making process. Our approach outperforms previous methods on both recognition and localization tasks, it also passes the sanity check. We also indicate its application as debugging tools. The implementation is available 1 .
translated by 谷歌翻译
深神经网络(DNN)的黑盒性质严重阻碍了其在特定场景中的性能改善和应用。近年来,基于类激活映射的方法已被广泛用于解释计算机视觉任务中模型的内部决策。但是,当此方法使用反向传播获得梯度时,它将在显着图中引起噪声,甚至找到与决策无关的特征。在本文中,我们提出了一个基于绝对价值类激活映射(ABS-CAM)方法,该方法优化了从反向传播中得出的梯度,并将所有这些梯度变成正梯度,以增强输出神经元激活的视觉特征,并改善。显着图的本地化能力。 ABS-CAM的框架分为两个阶段:生成初始显着性图并生成最终显着图。第一阶段通过优化梯度来提高显着性图的定位能力,第二阶段将初始显着性图与原始图像线性结合在一起,以增强显着性图的语义信息。我们对拟议方法进行定性和定量评估,包括删除,插入和指向游戏。实验结果表明,ABS-CAM显然可以消除显着性图中的噪声,并且可以更好地定位与决策相关的功能,并且优于以前的识别和定位任务中的方法。
translated by 谷歌翻译
类激活图(CAM)已被广泛研究,用于视觉解释卷积神经网络的内部工作机理。现有基于CAM的方法的关键是计算有效的权重以在目标卷积层中结合激活图。现有的基于梯度和得分的加权方案在确保CAM的可区分性或忠诚度方面表现出了优越性,但它们通常在这两种属性中都无法表现出色。在本文中,我们提出了一种名为FD-CAM的新型CAM加权方案,以提高基于CAM的CNN视觉解释的忠诚和可区分性。首先,我们通过执行分组的通道切换操作来提高基于分数的权重的忠诚和可区分性。具体而言,对于每个通道,我们计算其相似性组,并同时打开或关闭一组通道以计算类预测评分的变化为权重。然后,我们将改进的基于得分的权重与常规梯度的权重相结合,以便可以进一步提高最终CAM的可区分性。我们与最新的CAM算法进行了广泛的比较。定量和定性的结果表明,我们的FD-CAM可以对CNN产生更忠实,更具歧视性的视觉解释。我们还进行实验,以验证提出的分组通道切换和重量组合方案在改善结果方面的有效性。我们的代码可在https://github.com/crishhhhh1998/fd-cam上找到。
translated by 谷歌翻译
弱监督的语义分割(WSSS)是具有挑战性的,特别是当使用图像级标签来监督像素级预测时。为了弥合它们的差距,通常生成一个类激活图(CAM)以提供像素级伪标签。卷积神经网络中的凸轮患有部分激活,即,仅激活最多的识别区域。另一方面,基于变压器的方法在探索具有长范围依赖性建模的全球背景下,非常有效,可能会减轻“部分激活”问题。在本文中,我们提出了基于第一变压器的WSSS方法,并介绍了梯度加权元素明智的变压器注意图(GetAn)。 GetaN显示所有特征映射元素的精确激活,跨越变压器层显示对象的不同部分。此外,我们提出了一种激活感知标签完成模块来生成高质量的伪标签。最后,我们将我们的方法纳入了使用双向向上传播的WSS的结束框架。 Pascal VOC和Coco的广泛实验表明,我们的结果通过显着的保证金击败了最先进的端到端方法,并且优于大多数多级方法.M大多数多级方法。
translated by 谷歌翻译
卷积神经网络(CNN)成为计算机视觉最受欢迎和最突出的深度学习体系结构之一,但其黑匣子功能隐藏了内部预测过程。因此,AI从业者阐明了可解释的AI,以提供模型行为的解释性。特别是,基于类的激活图(CAM)和基于GRAD-CAM的方法已显示出希望结果,但它们具有架构限制或梯度计算负担。为了解决这些问题,已建议将得分摄像机作为一种无梯度方法,但是,与基于CAM或GRAD-CAM的方法相比,它需要更多的执行时间。因此,我们通过空间掩盖提取的特征图来利用激活图和网络输出之间的相关性,提出了一个轻巧的体系结构和无梯度的互惠凸轮(配克CAM)。通过提出的方法,与平均跌落 - 相干 - 复杂性(ADCC)度量相比,Resnet家族中的1:78-3:72%的收益不包括VGG-16(1:39%)(1:39%) )。此外,配置摄像头表现出与Grad-CAM相似的显着性图生成速率,并且比Score-CAM快于148倍。
translated by 谷歌翻译
深度学习已经变得过于复杂,并且在解决图像分类,对象检测等若干古典问题方面享有恒星的成功。已经提出了几种解释这些决定的方法。由于它们不利用模型的内部来解释该决定,为生成显着性图产生显着性图的方法特别感到很有趣。大多数黑匣子方法扰乱了输入并观察输出的变化。我们将显着的图形制定为顺序搜索问题,并利用加强学习(RL)来累积来自输入图像的证据,最强烈地支持分类器的决策。这种战略鼓励智能地搜索扰动,这将导致高质量的解释。虽然成功的黑匣子解释方法需要依靠重计算并遭受小的样本近似,但我们的方法学到的确定性政策使得在推理期间更有效。三个基准数据集的实验证明了在不损害性能的情况下推动了推理时间的提议方法的优越性。项目页面:https://cvir.github.io/projects/rexl.html
translated by 谷歌翻译
我们描述了一种新颖的归因方法,它基于敏感性分析并使用Sobol指数。除了模拟图像区域的个人贡献之外,索尔索尔指标提供了一种有效的方法来通过方差镜头捕获图像区域与其对神经网络的预测的贡献之间的高阶相互作用。我们描述了一种通过使用扰动掩模与有效估计器耦合的扰动掩模来计算用于高维问题的这些指标的方法,以处理图像的高维度。重要的是,我们表明,与其他黑盒方法相比,该方法对视觉(和语言模型)的标准基准测试的标准基准有利地导致了有利的分数 - 甚至超过最先进的白色的准确性 - 需要访问内部表示的箱方法。我们的代码是免费的:https://github.com/fel-thomas/sobol-attribution-method
translated by 谷歌翻译
最近,Vision Transformer模型已成为一系列视觉任务的重要模型。但是,这些模型通常是不透明的,特征可解释性较弱。此外,目前尚无针对本质上可解释的变压器构建的方法,该方法能够解释其推理过程并提供忠实的解释。为了缩小这些关键差距,我们提出了一种新型视觉变压器,称为“可解释的视觉变压器”(Ex-Vit),这是一种本质上可解释的变压器模型,能够共同发现可鲁棒的可解释特征并执行预测。具体而言,前vit由可解释的多头注意(E-MHA)模块,属性引导的解释器(ATTE)模块和自我监督属性引导的损失组成。 E-MHA裁缝可以解释的注意力重量,能够从本地贴片中学习具有噪音稳健性的模型决策的语义解释表示。同时,提议通过不同的属性发现来编码目标对象的歧视性属性特征,该发现构成了模型预测的忠实证据。此外,为我们的前武器开发了自我监督的属性引导损失,该损失旨在通过属性可区分性机制和属性多样性机制来学习增强表示形式,以定位多样性和歧视性属性并产生更健壮的解释。结果,我们可以通过拟议的前武器发现具有多种属性的忠实和强大的解释。
translated by 谷歌翻译
We propose a technique for producing 'visual explanations' for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent and explainable.Our approach -Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say 'dog' in a classification network or a sequence of words in captioning network) flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept.Unlike previous approaches, Grad-CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fullyconnected layers (e.g. VGG), (2) CNNs used for structured outputs (e.g. captioning), (3) CNNs used in tasks with multimodal inputs (e.g. visual question answering) or reinforcement learning, all without architectural changes or re-training. We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative vi-
translated by 谷歌翻译
3D卷积神经网络(3D CNN)在诸如视频序列之类的3D数据中捕获空间和时间信息。然而,由于卷积和汇集机制,信息损失似乎是不可避免的。为了改善3D CNN的视觉解释和分类,我们提出了两种方法; i)使用培训的3dresnext网络聚合到本地(全局 - 本地)离散梯度的层面全局,II)实施注意门控网络以提高动作识别的准确性。拟议的方法打算通过视觉归因,弱监督行动本地化和行动识别,显示各层在3D CNN中被称为全球局部关注的有用性。首先,使用关于最大预测类的BackPropagation培训3dresnext培训并应用于动作分类。然后将每层的梯度和激活取样。稍后,聚合用于产生更细致的注意力,指出了预测类输入视频的最关键部分。我们使用最终关注的轮廓阈值为最终的本地化。我们使用3DCAM使用细粒度的视觉解释来评估修剪视频中的空间和时间动作定位。实验结果表明,该拟议方法产生了丰富的视觉解释和歧视性的关注。此外,通过每个层上的注意栅格的动作识别产生比基线模型更好的分类结果。
translated by 谷歌翻译
大多数现有的语义分割方法都以图像级类标签作为监督,高度依赖于从标准分类网络生成的初始类激活图(CAM)。在本文中,提出了一种新颖的“渐进贴片学习”方法,以改善分类的局部细节提取,从而更好地覆盖整个对象的凸轮,而不仅仅是在常规分类模型中获得的CAM中的最歧视区域。 “补丁学习”将特征映射破坏成贴片,并在最终聚合之前并行独立处理每个本地贴片。这样的机制强迫网络从分散的歧视性本地部分中找到弱信息,从而提高了本地细节的敏感性。 “渐进的补丁学习”进一步将特征破坏和补丁学习扩展到多层粒度。与多阶段优化策略合作,这种“渐进的补丁学习”机制隐式地为模型提供了跨不同位置粒状性的特征提取能力。作为隐式多粒性渐进式融合方法的替代方案,我们还提出了一种明确的方法,以同时将单个模型中不同粒度的特征融合,从而进一步增强了完整对象覆盖的凸轮质量。我们提出的方法在Pascal VOC 2012数据集上取得了出色的性能,例如,测试集中有69.6 $%miou),它超过了大多数现有的弱监督语义细分方法。代码将在此处公开提供,https://github.com/tyroneli/ppl_wsss。
translated by 谷歌翻译
使用深度学习模型从组织学数据中诊断癌症提出了一些挑战。这些图像中关注区域(ROI)的癌症分级和定位通常依赖于图像和像素级标签,后者需要昂贵的注释过程。深度弱监督的对象定位(WSOL)方法为深度学习模型的低成本培训提供了不同的策略。仅使用图像级注释,可以训练这些方法以对图像进行分类,并为ROI定位进行分类类激活图(CAM)。本文综述了WSOL的​​最先进的DL方法。我们提出了一种分类法,根据模型中的信息流,将这些方法分为自下而上和自上而下的方法。尽管后者的进展有限,但最近的自下而上方法目前通过深层WSOL方法推动了很多进展。早期作品的重点是设计不同的空间合并功能。但是,这些方法达到了有限的定位准确性,并揭示了一个主要限制 - 凸轮的不足激活导致了高假阴性定位。随后的工作旨在减轻此问题并恢复完整的对象。评估和比较了两个具有挑战性的组织学数据集的分类和本地化准确性,对我们的分类学方法进行了评估和比较。总体而言,结果表明定位性能差,特别是对于最初设计用于处理自然图像的通用方法。旨在解决组织学数据挑战的方法产生了良好的结果。但是,所有方法都遭受高假阳性/阴性定位的影响。在组织学中应用深WSOL方法的应用是四个关键的挑战 - 凸轮的激活下/过度激活,对阈值的敏感性和模型选择。
translated by 谷歌翻译
基于弱监管的像素 - 明显的密集预测任务当前使用类注意映射(CAM)以产生伪掩模作为地面真理。然而,现有方法通常取决于诱人的训练模块,这可能会引入磨削计算开销和复杂的培训程序。在这项工作中,提出了语义结构知识推断(SSA)来探索隐藏在基于CNN的网络的不同阶段的语义结构信息,以在模型推断中产生高质量凸轮。具体地,首先提出语义结构建模模块(SSM)来生成类别不可知语义相关表示,其中每个项目表示一个类别对象和所有其他类别之间的亲和程度。然后,探索结构化特征表示通过点产品操作来抛光不成熟的凸轮。最后,来自不同骨架级的抛光凸轮融合为输出。所提出的方法具有没有参数的优点,不需要培训。因此,它可以应用于广泛的弱监管像素 - 明智的密集预测任务。对弱势监督对象本地化和弱监督语义分割任务的实验结果证明了该方法的效力,这使得新的最先进的结果实现了这两项任务。
translated by 谷歌翻译
近年来,可解释的人工智能(XAI)已成为一个非常适合的框架,可以生成人类对“黑盒”模型的可理解解释。在本文中,一种新颖的XAI视觉解释算法称为相似性差异和唯一性(SIDU)方法,该方法可以有效地定位负责预测的整个对象区域。通过各种计算和人类主题实验分析了SIDU算法的鲁棒性和有效性。特别是,使用三种不同类型的评估(应用,人类和功能地面)评估SIDU算法以证明其出色的性能。在对“黑匣子”模型的对抗性攻击的情况下,进一步研究了Sidu的鲁棒性,以更好地了解其性能。我们的代码可在:https://github.com/satyamahesh84/sidu_xai_code上找到。
translated by 谷歌翻译
解释深度卷积神经网络最近引起了人们的关注,因为它有助于了解网络的内部操作以及为什么它们做出某些决定。显着地图强调了与网络决策的主要连接的显着区域,是可视化和分析计算机视觉社区深层网络的最常见方法之一。但是,由于未经证实的激活图权重的建议,这些图像没有稳固的理论基础,并且未能考虑每个像素之间的关系,因此现有方法生成的显着图不能表示图像中的真实信息。在本文中,我们开发了一种基于类激活映射的新型事后视觉解释方法,称为Shap-Cam。与以前的基于梯度的方法不同,Shap-Cam通过通过Shapley值获得每个像素的重要性来摆脱对梯度的依赖。我们证明,Shap-Cam可以在解释决策过程中获得更好的视觉性能和公平性。我们的方法在识别和本地化任务方面的表现优于以前的方法。
translated by 谷歌翻译
经过图像级标签训练的弱监督图像分割通常在伪地面上的生成期间因物体区域的覆盖率不准确。这是因为对象激活图受到分类目标的训练,并且缺乏概括的能力。为了提高客观激活图的一般性,我们提出了一个区域原型网络RPNET来探索训练集的跨图像对象多样性。通过区域特征比较确定了跨图像的相似对象零件。区域之间传播对象信心,以发现新的对象区域,同时抑制了背景区域。实验表明,该提出的方法会生成更完整和准确的伪对象掩模,同时在Pascal VOC 2012和MS Coco上实现最先进的性能。此外,我们研究了提出的方法在减少训练集方面的鲁棒性。
translated by 谷歌翻译
弱监督语义分段(WSSS)的现有研究已经利用了类激活映射(CAM)来本地化类对象。然而,由于分类损失不足以提供精确的物区域,因此凸轮倾向于偏向辨别模式(即,稀疏),并且不提供精确的对象边界信息(即,不确定)。为了解决这些限制,我们提出了一种新颖的框架(由MainNet和SupportNet组成),从给定的图像级监督导出像素级自我监督。在我们的框架中,借助拟议的区域对比模块(RCM)和多尺寸细分模块(MAM),MainNet由来自SupportNet的自我监督训练。 RCM从SupportNet中提取两种形式的自我监督:(1)从凸轮和(2)根据类区域掩码的特征获得的(2)类的类别区域掩模。然后,主目的的每个像素明智的特征被原型训练以对比的方式,锐化所产生的凸轮。 MAM利用从SupportNet的多个尺度推断的凸轮作为自我监控来指导MailNet。基于Mainnet和SupportNet的多尺度凸轮之间的不相似性,来自主目的的凸轮训练以扩展到较少辨别的区域。该方法在Pascal VOC 2012数据集上显示了在列车和验证集上的最先进的WSSS性能。为了再现性,代码将很快公开提供。
translated by 谷歌翻译