背景:在各个领域中观察到需求不断增加,以利用机器学习(ML)解决复杂问题。 ML模型作为软件组件实现,并部署在机器学习软件系统(MLSS)中。问题:非常需要确保MLSS的服务质量。这种系统的虚假决定或不良决定会导致其他系统的故障,重大财务损失甚至对人类生命的威胁。 MLSSS的质量保证被认为是一项具有挑战性的任务,目前是一个热门研究主题。此外,重要的是要涵盖MLSS中质量的所有各个方面。目的:本文旨在从从业者的角度研究MLSS中实际质量问题的特征。这项实证研究旨在确定与MLSS质量差有关的坏实践目录。方法:我们计划对从业人员/专家进行一系列访谈,认为访谈是在处理质量问题时检索其经验和实践的最佳方法。我们希望在此步骤中开发的问题目录还将帮助我们以后确定MLSS质量问题的严重性,根本原因以及可能的补救措施,从而使我们能够为ML模型和MLSS开发有效的质量保证工具。
translated by 谷歌翻译
如今,由于最近在人工智能(AI)和机器学习(ML)中的近期突破,因此,智能系统和服务越来越受欢迎。然而,机器学习不仅满足软件工程,不仅具有有希望的潜力,而且还具有一些固有的挑战。尽管最近的一些研究努力,但我们仍然没有明确了解开发基于ML的申请和当前行业实践的挑战。此外,目前尚不清楚软件工程研究人员应将其努力集中起来,以更好地支持ML应用程序开发人员。在本文中,我们报告了一个旨在了解ML应用程序开发的挑战和最佳实践的调查。我们合成从80名从业者(以不同的技能,经验和应用领域)获得的结果为17个调查结果;概述ML应用程序开发的挑战和最佳实践。参与基于ML的软件系统发展的从业者可以利用总结最佳实践来提高其系统的质量。我们希望报告的挑战将通知研究界有关需要调查的主题,以改善工程过程和基于ML的申请的质量。
translated by 谷歌翻译
组织依靠机器学习工程师(MLE)来操作ML,即部署和维护生产中的ML管道。操作ML或MLOP的过程包括(i)数据收集和标记的连续循环,(ii)实验以改善ML性能,(iii)在多阶段部署过程中评估,以及(iv)监视(iv)性能下降。当一起考虑这些责任似乎令人震惊 - 任何人如何进行MLOP,没有解决的挑战,对工具制造商有什么影响?我们对在包括聊天机器人,自动驾驶汽车和金融在内的许多应用程序中工作的18个MLE进行了半结构化的民族志访谈。我们的访谈暴露了三个变量,这些变量控制了生产ML部署的成功:速度,验证和版本。我们总结了成功实验,部署和维持生产绩效的共同实践。最后,我们讨论了受访者的痛点和反图案,对工具设计产生了影响。
translated by 谷歌翻译
负责任的AI被广泛认为是我们时代最大的科学挑战之一,也是释放AI市场并增加采用率的关键。为了应对负责任的AI挑战,最近已经发布了许多AI伦理原则框架,AI系统应该符合这些框架。但是,没有进一步的最佳实践指导,从业者除了真实性之外没有什么。同样,在算法级别而不是系统级的算法上进行了重大努力,主要集中于数学无关的道德原则(例如隐私和公平)的一部分。然而,道德问题在开发生命周期的任何步骤中都可能发生,从而超过AI算法和模型以外的系统的许多AI,非AI和数据组件。为了从系统的角度操作负责任的AI,在本文中,我们采用了一种面向模式的方法,并根据系统的多媒体文献综述(MLR)的结果提出了负责任的AI模式目录。与其呆在道德原则层面或算法层面上,我们专注于AI系统利益相关者可以在实践中采取的模式,以确保开发的AI系统在整个治理和工程生命周期中负责。负责的AI模式编目将模式分为三组:多层次治理模式,可信赖的过程模式和负责任的逐设计产品模式。这些模式为利益相关者实施负责任的AI提供了系统性和可行的指导。
translated by 谷歌翻译
尽管机器学习在实践中被广泛使用,但对从业者对潜在安全挑战的理解知之甚少。在这项工作中,我们缩小了这一巨大的差距,并贡献了一项定性研究,重点是开发人员的机器学习管道和潜在脆弱组件的心理模型。类似的研究在其他安全领域有助于发现根本原因或改善风险交流。我们的研究揭示了从业人员的机器学习安全性心理模型的两个方面。首先,从业人员通常将机器学习安全与与机器学习无直接相关的威胁和防御措施混淆。其次,与大多数学术研究相反,我们的参与者认为机器学习的安全性与单个模型不仅相关,而在整个工作流程中,由多个组件组成。与我们的其他发现共同,这两个方面为确定机器学习安全性的心理模型提供了基础学习安全。
translated by 谷歌翻译
在软件项目中引入机器学习(ML)组件创造了软件工程师与数据科学家和其他专家合作。虽然合作可以始终具有挑战性,但ML介绍了探索性模型开发过程的额外挑战,需要额外的技能和知识,测试ML系统的困难,需要连续演化和监测,以及非传统质量要求,如公平性和解释性。通过采访来自28个组织的45名从业者,我们确定了在建立和将ML系统部署到生产时面临的关键合作挑战。我们报告了生产ML系统的开发中的共同合作点,以获得要求,数据和集成以及相应的团队模式和挑战。我们发现,这些挑战中的大部分挑战围绕通信,文档,工程和流程以及收集建议以解决这些挑战。
translated by 谷歌翻译
随着各种公开的AI伦理原则的共识,差距仍然可以随时采用设计和开发负责任的AI系统。我们研究了来自澳大利亚国家科学研究机构(CSIRO)的研究人员和工程师的实践和经验,他们参与设计和开发AI系统的一系列目的。半结构化访谈用于检查参与者的做法如何与澳大利亚政府提出的一套高级AI伦理原则涉及并对齐。原则包括:隐私保护和安全,可靠性和安全性,透明度和解释性,公平性,竞争性,责任,人以人为本的价值观和人类,社会与环境福祉。研究了研究人员和工程师的见解以及在原则的实际应用中为它们提供的挑战。最后,提供了一系列组织响应,以支持实施高级AI道德原则。
translated by 谷歌翻译
人工智能(AI)治理调节行使权威和控制AI的管理。它旨在通过有效利用数据并最大程度地减少与AI相关的成本和风险来利用AI。尽管AI治理和AI伦理等主题在理论,哲学,社会和监管层面上进行了详尽的讨论,但针对公司和公司的AI治理工作有限。这项工作将AI产品视为系统,在该系统中,通过机器学习(ML)模型(培训)数据传递关键功能。我们通过在AI和相关领域(例如ML)合成文献来得出一个概念框架。我们的框架将AI治理分解为数据的治理,(ML)模型和(AI)系统沿着四个维度。它与现有的IT和数据治理框架和实践有关。它可以由从业者和学者都采用。对于从业者来说,主要是研究论文的综合,但从业者的出版物和监管机构的出版物也为实施AI治理提供了宝贵的起点,而对于学者来说,该论文强调了许多AI治理领域,值得更多关注。
translated by 谷歌翻译
数据对于机器学习(ML)模型的开发和评估至关重要。但是,在部署所得模型时,使用有问题或不适当的数据集可能会造成危害。为了通过对数据集进行更故意的反思和创建过程的透明度来鼓励负责任的练习,研究人员和从业人员已开始倡导增加数据文档,并提出了几个数据文档框架。但是,几乎没有研究这些数据文档框架是否满足创建和消费数据集的ML从业者的需求。为了解决这一差距,我们着手了解ML从业人员的数据文档感知,需求,挑战和Desiderata,目的是推导设计要求,以便为将来的数据文档框架提供信息。我们对一家大型国际技术公司的14名ML从业者进行了一系列半结构化访谈。我们让他们回答从数据集的数据表中提取的问题列表(Gebru,2021)。我们的发现表明,目前的数据文档方法在很大程度上是临时的,而且本质上是近视的。参与者表达了对数据文档框架的需求,可以适应其上下文,并将其集成到现有的工具和工作流程中,并尽可能自动化。尽管事实上,数据文档框架通常是从负责人的AI的角度出发的,但参与者并未在他们被要求回答的问题与负责的AI含义之间建立联系。此外,参与者通常会在数据集消费者的需求中优先考虑,并提供了不熟悉其数据集可能需要知道的信息。基于这些发现,我们为将来的数据文档框架得出了七个设计要求。
translated by 谷歌翻译
已经开发出各种工具和实践来支持从业者识别,评估和减轻AI系统造成的公平相关危害。然而,现有研究突出了这些工具和实践的预期设计与特定背景下的使用之间的差距,包括由组织因素在塑造公平工作中发挥的作用引起的差距。在本文中,我们研究了一个这样的实践的这些差距:AI系统的分类评估,旨在揭示人口统计组之间的表现差异。通过在三个技术公司的十支队伍中进行半结构化访谈和三十三名艾尔从业人员,我们在设计分列的评估时,我们识别从业者的流程,挑战,并对支持的需求。我们发现从业者在选择绩效指标时面临挑战,识别最相关的直接利益相关者和在其上进行重点的人口统计集团,并收集其进行分类评估的数据集。更一般地说,我们识别对公平工作的影响,这些工作缺乏与直接利益相关者的订婚,优先考虑通过边缘化群体的客户,以及以规模部署AI系统的驱动器。
translated by 谷歌翻译
过去十年已经看到人工智能(AI)的显着进展,这导致了用于解决各种问题的算法。然而,通过增加模型复杂性并采用缺乏透明度的黑匣子AI模型来满足这种成功。为了响应这种需求,已经提出了说明的AI(Xai)以使AI更透明,从而提高关键结构域中的AI。虽然有几个关于Xai主题的Xai主题的评论,但在Xai中发现了挑战和潜在的研究方向,这些挑战和研究方向被分散。因此,本研究为Xai组织的挑战和未来的研究方向提出了系统的挑战和未来研究方向:(1)基于机器学习生命周期的Xai挑战和研究方向,基于机器的挑战和研究方向阶段:设计,开发和部署。我们认为,我们的META调查通过为XAI地区的未来探索指导提供了XAI文学。
translated by 谷歌翻译
机器学习(ML)系统的开发和部署可以用现代工具轻松执行,但该过程通常是匆忙和意思是结束的。缺乏勤奋会导致技术债务,范围蠕变和未对准的目标,模型滥用和失败,以及昂贵的后果。另一方面,工程系统遵循明确定义的流程和测试标准,以简化高质量,可靠的结果的开发。极端是航天器系统,其中关键任务措施和鲁棒性在开发过程中根深蒂固。借鉴航天器工程和ML的经验(通过域名通过产品的研究),我们开发了一种经过验证的机器学习开发和部署的系统工程方法。我们的“机器学习技术准备水平”(MLTRL)框架定义了一个原则的过程,以确保强大,可靠和负责的系统,同时为ML工作流程流线型,包括来自传统软件工程的关键区别。 MLTRL甚至更多,MLTRL为跨团队和组织的人们定义了一个人工智能和机器学习技术的人员。在这里,我们描述了通过生产化和部署在医学诊断,消费者计算机视觉,卫星图像和粒子物理学等领域,以通过生产和部署在基本研究中开发ML方法的几个现实世界使用情况的框架和阐明。
translated by 谷歌翻译
In this chapter, we review and discuss the transformation of AI technology in HCI/UX work and assess how AI technology will change how we do the work. We first discuss how AI can be used to enhance the result of user research and design evaluation. We then discuss how AI technology can be used to enhance HCI/UX design. Finally, we discuss how AI-enabled capabilities can improve UX when users interact with computing systems, applications, and services.
translated by 谷歌翻译
随着全球人口越来越多的人口驱动世界各地的快速城市化,有很大的需要蓄意审议值得生活的未来。特别是,随着现代智能城市拥抱越来越多的数据驱动的人工智能服务,值得记住技术可以促进繁荣,福祉,城市居住能力或社会正义,而是只有当它具有正确的模拟补充时(例如竭尽全力,成熟机构,负责任治理);这些智能城市的最终目标是促进和提高人类福利和社会繁荣。研究人员表明,各种技术商业模式和特征实际上可以有助于极端主义,极化,错误信息和互联网成瘾等社会问题。鉴于这些观察,解决了确保了诸如未来城市技术基岩的安全,安全和可解释性的哲学和道德问题,以为未来城市的技术基岩具有至关重要的。在全球范围内,有能够更加人性化和以人为本的技术。在本文中,我们分析和探索了在人以人为本的应用中成功部署AI的安全,鲁棒性,可解释性和道德(数据和算法)挑战的关键挑战,特别强调这些概念/挑战的融合。我们对这些关键挑战提供了对现有文献的详细审查,并分析了这些挑战中的一个可能导致他人的挑战方式或帮助解决其他挑战。本文还建议了这些域的当前限制,陷阱和未来研究方向,以及如何填补当前的空白并导致更好的解决方案。我们认为,这种严谨的分析将为域名的未来研究提供基准。
translated by 谷歌翻译
Software-related platforms have enabled their users to collaboratively label software entities with topics. Tagging software repositories with relevant topics can be exploited for facilitating various downstream tasks. For instance, a correct and complete set of topics assigned to a repository can increase its visibility. Consequently, this improves the outcome of tasks such as browsing, searching, navigation, and organization of repositories. Unfortunately, assigned topics are usually highly noisy, and some repositories do not have well-assigned topics. Thus, there have been efforts on recommending topics for software projects, however, the semantic relationships among these topics have not been exploited so far. We propose two recommender models for tagging software projects that incorporate the semantic relationship among topics. Our approach has two main phases; (1) we first take a collaborative approach to curate a dataset of quality topics specifically for the domain of software engineering and development. We also enrich this data with the semantic relationships among these topics and encapsulate them in a knowledge graph we call SED-KGraph. Then, (2) we build two recommender systems; The first one operates only based on the list of original topics assigned to a repository and the relationships specified in our knowledge graph. The second predictive model, however, assumes there are no topics available for a repository, hence it proceeds to predict the relevant topics based on both textual information of a software project and SED-KGraph. We built SED-KGraph in a crowd-sourced project with 170 contributors from both academia and industry. The experiment results indicate that our solutions outperform baselines that neglect the semantic relationships among topics by at least 25% and 23% in terms of ASR and MAP metrics.
translated by 谷歌翻译
尽管在机器学习安全方面进行了大量的学术工作,但对野外机器学习系统的攻击的发生知之甚少。在本文中,我们报告了139名工业从业人员的定量研究。我们分析攻击发生和关注,并评估影响影响威胁感知和暴露的因素的统计假设。我们的结果阐明了对部署的机器学习的现实攻击。在组织层面上,尽管我们没有发现样本中威胁暴露的预测因素,但实施防御量取决于暴露于威胁或预期的可能性成为目标的可能性。我们还提供了从业人员对单个机器学习攻击的相关性的答复,揭示了不可靠的决策,业务信息泄漏和偏见引入模型等复杂问题。最后,我们发现,在个人层面上,有关机器学习安全性的先验知识会影响威胁感知。我们的工作为在实践中的对抗机器学习方面进行更多研究铺平了道路,但收益率也可以洞悉监管和审计。
translated by 谷歌翻译
机器学习(ML)研究出版物通常在GitHub上提供开源实现,使他们的受众可以复制,验证甚至扩展机器学习算法,数据集和元数据。但是,到目前为止,关于此类ML研究存储库的协作活动程度知之甚少,特别是(1)此类存储库从叉子获得贡献的程度,(2)此类贡献的性质(即类型,变化),以及(3)变更的性质,这些变化未归还给叉子,这可能代表了错过的机会。在本文中,我们对1,346毫升研究存储库及其67,369叉进行了验证,无论是定量还是定性(通过Hindle等人的构建代码更改的开创性分类法)。我们发现,尽管ML研究存储库是大量分叉的,但只有9%的叉子对叉子存储库进行了修改。后者的42%发送给家长存储库的更改,其中一半(52%)被父家存储库接受。我们对539个贡献的定性分析和378个本地(仅叉)变化,扩展了Hindle等人的分类法,其中一个与ML(数据)相关的新顶级变更类别和15个新的子类别,包括9个ML--特定的(输入数据,输出数据,程序数据,共享,变更评估,参数调整,性能,预处理,模型培训)。虽然没有由叉子造成的更改主要是涉及域特定于域的定制和本地实验(例如,参数调整),但原点ML存储库确实错过了不可忽视的15.4%文档更改的13.6%的功能更改,而功能更改的13.6%和11.4%的错误修复更改。本文中的发现将对从业者,研究人员,工具匠和教育者有用。
translated by 谷歌翻译
使用计算笔记本(例如,Jupyter Notebook),数据科学家根据他们的先前经验和外部知识(如在线示例)合理化他们的探索性数据分析(EDA)。对于缺乏关于数据集或问题的具体了解的新手或数据科学家,有效地获得和理解外部信息对于执行EDA至关重要。本文介绍了eDassistant,一个jupyterlab扩展,支持EDA的原位搜索示例笔记本电脑和有用的API的推荐,由搜索结果的新颖交互式可视化供电。代码搜索和推荐是由最先进的机器学习模型启用的,培训在线收集的EDA笔记本电脑的大型语料库。进行用户学习,以调查埃迪卡斯特和数据科学家的当前实践(即,使用外部搜索引擎)。结果证明了埃迪斯坦特的有效性和有用性,与会者赞赏其对EDA的顺利和环境支持。我们还报告了有关代码推荐工具的几种设计意义。
translated by 谷歌翻译
在线众包平台使对算法输出进行评估变得容易,并提出诸如“哪个图像更好,A或B?”之类的问题的调查,在视觉和图形研究论文中的这些“用户研究”的扩散导致了增加匆忙进行的研究充其量是草率且无知的,并且可能有害和误导。我们认为,在计算机视觉和图形论文中的用户研究的设计和报告需要更多关注。为了提高从业者的知识并提高用户研究的可信度和可复制性,我们提供了用户体验研究(UXR),人类计算机互动(HCI)和相关领域的方法论的概述。我们讨论了目前在计算机视觉和图形研究中未利用的基础用户研究方法(例如,需要调查),但可以为研究项目提供宝贵的指导。我们为有兴趣探索其他UXR方法的读者提供了进一步的指导。最后,我们描述了研究界的更广泛的开放问题和建议。我们鼓励作者和审稿人都认识到,并非每项研究贡献都需要用户研究,而且根本没有研究比不小心进行的研究更好。
translated by 谷歌翻译
机器学习(ML)技术在教育方面越来越普遍,从预测学生辍学,到协助大学入学以及促进MOOC的兴起。考虑到这些新颖用途的快速增长,迫切需要调查ML技术如何支持长期以来的教育原则和目标。在这项工作中,我们阐明了这一复杂的景观绘制,以对教育专家的访谈进行定性见解。这些访谈包括对过去十年中著名应用ML会议上发表的ML教育(ML4ED)论文的深入评估。我们的中心研究目标是批判性地研究这些论文的陈述或暗示教育和社会目标如何与他们解决的ML问题保持一致。也就是说,技术问题的提出,目标,方法和解释结果与手头的教育问题保持一致。我们发现,在ML生命周期的两个部分中存在跨学科的差距,并且尤其突出:从教育目标和将预测转换为干预措施的ML问题的提出。我们使用这些见解来提出扩展的ML生命周期,这也可能适用于在其他领域中使用ML。我们的工作加入了越来越多的跨教育和ML研究的荟萃分析研究,以及对ML社会影响的批判性分析。具体而言,它填补了对机器学习的主要技术理解与与学生合作和政策合作的教育研究人员的观点之间的差距。
translated by 谷歌翻译