原型零件网络(Protopnet)引起了广泛的关注,并增加了许多随访研究,因为它的自我解释特性可解释人工智能(XAI)。但是,当直接在视觉变压器(VIT)骨架上应用原始网络时,学到的原型存在“分心”问题:它们具有相对较高的可能性,即被背景激活,并且对前景的关注较少。建模长期依赖性的强大能力使得基于变压器的Protopnet难以专注于原型部分,从而严重损害了其固有的解释性。本文提出了原型零件变压器(ProtoPformer),以适当有效地应用基于原型的方法,并使用VIT进行可解释的图像识别。提出的方法介绍了根据VIT的建筑特征捕获和突出目标的代表性整体和部分特征的全局和局部原型。采用了全球原型,以提供对象的全球视图,以指导本地原型集中在前景上,同时消除背景的影响。之后,明确监督局部原型,以专注于它们各自的原型视觉部分,从而提高整体可解释性。广泛的实验表明,我们提出的全球和本地原型可以相互纠正并共同做出最终决策,这些决策分别忠实,透明地从整体和地方的角度缔合过程。此外,ProtoPformer始终取得优于基于原型的原型基线(SOTA)的卓越性能和可视化结果。我们的代码已在https://github.com/zju-vipa/protopformer上发布。
translated by 谷歌翻译
ProtoPNet and its follow-up variants (ProtoPNets) have attracted broad research interest for their intrinsic interpretability from prototypes and comparable accuracy to non-interpretable counterparts. However, it has been recently found that the interpretability of prototypes can be corrupted due to the semantic gap between similarity in latent space and that in input space. In this work, we make the first attempt to quantitatively evaluate the interpretability of prototype-based explanations, rather than solely qualitative evaluations by some visualization examples, which can be easily misled by cherry picks. To this end, we propose two evaluation metrics, termed consistency score and stability score, to evaluate the explanation consistency cross images and the explanation robustness against perturbations, both of which are essential for explanations taken into practice. Furthermore, we propose a shallow-deep feature alignment (SDFA) module and a score aggregation (SA) module to improve the interpretability of prototypes. We conduct systematical evaluation experiments and substantial discussions to uncover the interpretability of existing ProtoPNets. Experiments demonstrate that our method achieves significantly superior performance to the state-of-the-arts, under both the conventional qualitative evaluations and the proposed quantitative evaluations, in both accuracy and interpretability. Codes are available at https://github.com/hqhQAQ/EvalProtoPNet.
translated by 谷歌翻译
机器学习已广泛采用在许多领域,包括高赌注应用,如医疗保健,金融和刑事司法。为了满足公平,问责制和透明度的担忧,这些关键域中的机器学习模型的预测必须是可解释的。通过整合深度神经网络的力量以及基于案例的推理来产生准确尚不可解释的图像分类模型来实现这一挑战的一系列挑战。这些模型通常通过将其与培训期间学习的原型进行比较来分类输入图像,以“这看起来这样的形式产生解释”。然而,来自这一工作行的方法使用空间刚性原型,这不能明确地解释姿势变化。在本文中,我们通过提出基于案例的可解释的神经网络来解决这种缺点,该神经网络提供空间柔性原型,称为可变形的原型部件网络(可变形Protopnet)。在可变形的Protopnet中,每个原型由若干原型部分组成,其根据输入图像自适应地改变其相对空间位置。这使得每个原型能够检测具有更高的空间变换容差的对象特征,因为允许原型内的部件移动。因此,可变形的Protopnet可以明确地捕获姿势变化,提高模型精度和所提供的解释的丰富性。与使用原型的其他基于案例的可解释模型相比,我们的方法实现了竞争精度,提供了更大的上下文的解释,并且更容易训练,从而使得更广泛地利用可解释模型来进行计算机视觉的可解释模型。
translated by 谷歌翻译
When we are faced with challenging image classification tasks, we often explain our reasoning by dissecting the image, and pointing out prototypical aspects of one class or another. The mounting evidence for each of the classes helps us make our final decision. In this work, we introduce a deep network architectureprototypical part network (ProtoPNet), that reasons in a similar way: the network dissects the image by finding prototypical parts, and combines evidence from the prototypes to make a final classification. The model thus reasons in a way that is qualitatively similar to the way ornithologists, physicians, and others would explain to people on how to solve challenging image classification tasks. The network uses only image-level labels for training without any annotations for parts of images. We demonstrate our method on the CUB-200-2011 dataset and the Stanford Cars dataset. Our experiments show that ProtoPNet can achieve comparable accuracy with its analogous non-interpretable counterpart, and when several ProtoPNets are combined into a larger network, it can achieve an accuracy that is on par with some of the best-performing deep models. Moreover, ProtoPNet provides a level of interpretability that is absent in other interpretable deep models. * Contributed equally † DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.
translated by 谷歌翻译
旨在识别来自子类别的对象的细粒度视觉分类(FGVC)是一个非常具有挑战性的任务,因为固有的微妙级别差异。大多数现有工程主要通过重用骨干网络来提取检测到的歧视区域的特征来解决这个问题。然而,该策略不可避免地使管道复杂化并推动所提出的区域,其中大多数物体的大多数部分未能定位真正重要的部分。最近,视觉变压器(VIT)在传统的分类任务中表现出其强大的表现。变压器的自我关注机制将每个补丁令牌链接到分类令牌。在这项工作中,我们首先评估vit框架在细粒度识别环境中的有效性。然后,由于注意力的强度,可以直观地被认为是令牌重要性的指标,我们进一步提出了一种新颖的部分选择模块,可以应用于我们整合变压器的所有原始注意力的变压器架构进入注意地图,用于指导网络以有效,准确地选择鉴别的图像斑块并计算它们的关系。应用对比损失来扩大混淆类的特征表示之间的距离。我们将基于增强的变压器的模型Transfg命名,并通过在我们实现最先进的绩效的五个流行的细粒度基准测试中进行实验来展示它的价值。提出了更好地理解模型的定性结果。
translated by 谷歌翻译
我们介绍Protopool,一个可解释的图像分类模型,其中包含类的原型池。培训比现有方法更直接,因为它不需要修剪阶段。通过向特定类别引入完全可分辨分配的原型来获得它。此外,我们介绍了一种新的焦点相似度,将模型集中在罕见的前景特征上。我们表明Protopool在Cub-200-2011和斯坦福汽车数据集上获得最先进的准确性,大大减少了原型的数量。我们提供了对方法和用户学习的理论分析,以表明我们的原型比具有竞争方法所获得的原型更具独特。
translated by 谷歌翻译
弱监督的对象本地化是一项具有挑战性的任务,旨在将对象定位具有粗糙注释(例如图像类别)。现有的深网方法主要基于类激活图,该图的重点是突出显示歧视性局部区域,同时忽略了整个对象。此外,基于变压器的技术不断地重点放在阻碍识别完整对象的能力的背景上。为了解决这些问题,我们提出了一种称为令牌改进变压器(TRT)的重新注意事项机制,该机制捕获了对象级语义,以很好地指导本地化。具体而言,TRT引入了一个名为令牌优先级评分模块(TPSM)的新型模块,以抑制背景噪声的效果,同时重点放在目标对象上。然后,我们将类激活图作为语义意识的输入合并,以将注意力图限制为目标对象。在两个基准测试上进行的广泛实验展示了我们提出的方法与现有方法的优势,该方法具有带有图像类别注释的现有方法。源代码可在\ url {https://github.com/su-hui-zz/reattentiontransformer}中获得。
translated by 谷歌翻译
最近,Vision Transformer模型已成为一系列视觉任务的重要模型。但是,这些模型通常是不透明的,特征可解释性较弱。此外,目前尚无针对本质上可解释的变压器构建的方法,该方法能够解释其推理过程并提供忠实的解释。为了缩小这些关键差距,我们提出了一种新型视觉变压器,称为“可解释的视觉变压器”(Ex-Vit),这是一种本质上可解释的变压器模型,能够共同发现可鲁棒的可解释特征并执行预测。具体而言,前vit由可解释的多头注意(E-MHA)模块,属性引导的解释器(ATTE)模块和自我监督属性引导的损失组成。 E-MHA裁缝可以解释的注意力重量,能够从本地贴片中学习具有噪音稳健性的模型决策的语义解释表示。同时,提议通过不同的属性发现来编码目标对象的歧视性属性特征,该发现构成了模型预测的忠实证据。此外,为我们的前武器开发了自我监督的属性引导损失,该损失旨在通过属性可区分性机制和属性多样性机制来学习增强表示形式,以定位多样性和歧视性属性并产生更健壮的解释。结果,我们可以通过拟议的前武器发现具有多种属性的忠实和强大的解释。
translated by 谷歌翻译
细粒度的视觉分类(FGVC)旨在识别类似下属类别的对象,这对于人类的准确自动识别需求而言是挑战性和实用性的。大多数FGVC方法都集中在判别区域开采的注意力机制研究上,同时忽略了它们的相互依赖性和组成的整体对象结构,这对于模型的判别信息本地化和理解能力至关重要。为了解决上述限制,我们建议结构信息建模变压器(SIM-TRANS)将对象结构信息纳入变压器,以增强判别性表示学习,以包含外观信息和结构信息。具体而言,我们将图像编码为一系列贴片令牌,并使用两个精心设计的模块构建强大的视觉变压器框架:(i)提出了结构信息学习(SIL)模块以挖掘出在该模块中的空间上下文关系,对象范围借助变压器的自我发项权重,进一步注入导入结构信息的模型; (ii)引入了多级特征增强(MFB)模块,以利用类中多级特征和对比度学习的互补性,以增强功能鲁棒性,以获得准确的识别。提出的两个模块具有轻加权,可以插入任何变压器网络并轻松地端到端训练,这仅取决于视觉变压器本身带来的注意力重量。广泛的实验和分析表明,所提出的SIM-TRANS在细粒度的视觉分类基准上实现了最先进的性能。该代码可在https://github.com/pku-icst-mipl/sim-trans_acmmm2022上获得。
translated by 谷歌翻译
细粒度的图像识别是具有挑战性的,因为鉴别性线索通常是碎片化的,无论是来自单个图像还是多个图像。尽管有重要的改进,但大多数现有方法仍然专注于从单个图像中的最辨别部分,忽略其他地区的信息细节,缺乏从其他相关图像的线索考虑。在本文中,我们从新的角度分析了微粒图像识别的困难,并提出了一种具有峰值抑制模块和知识引导模块的变压器架构,其尊重单个图像中辨别特征的多样化和鉴别线索的聚合在多个图像中。具体地,峰值抑制模块首先利用线性投影来将输入图像转换为顺序令牌。然后,它基于变压器编码器产生的注意响应来阻止令牌。该模块因特征学习过程中的最辨别部分而受到惩罚,因此,提高了忽视区域的信息利用。知识引导模块将从峰值抑制模块生成的基于图像的表示与被学习的知识嵌入集进行比较,以获得知识响应系数。之后,使用响应系数作为分类分数,将知识学习形式形式化为分类问题。在训练期间更新知识嵌入和基于图像的表示,以便知识嵌入包括不同图像的鉴别线索。最后,我们将所获得的知识嵌入纳入基于形象的表示,作为全面的表示,导致性能显着提高。对六个流行数据集的广泛评估证明了所提出的方法的优势。
translated by 谷歌翻译
零击学习(ZSL)旨在识别培训集中没有样本的类。一种代表性的解决方案是直接学习将视觉特征与相应的类语义相关联的嵌入函数,以识别新类。许多方法扩展了这种解决方案,最近的方法特别热衷于从图像中提取丰富的特征,例如属性功能。这些属性特征通常在每个单独的图像中提取;但是,不强调跨图像的特征的共同特征。在本文中,我们提出了一个新的框架来通过明确学习原型超出图像来提高ZSL,并用图像中的属性级特征对其进行对比优化它们。除了新颖的体系结构外,还针对属性表示强调了两个元素:新的原型生成模块旨在从属性语义生成属性原型;引入了基于硬示例的对比优化方案,以增强嵌入空间中的属性级特征。我们探索了两个基于CNN的替代骨干,基于CNN的骨干,以在三个标准基准测试(Cub,Sun,Awa2)上构建我们的框架并进行实验。这些基准测试的结果表明,我们的方法通过相当大的利润来改善艺术的状态。我们的代码将在https://github.com/dyabel/coar-zsl.git上找到
translated by 谷歌翻译
弱监督对象本地化(WSOL)旨在仅通过使用图像级标签来学习对象本地化器。基于卷积神经网络(CNN)的技术通常导致突出显示物体的最辨别部分,同时忽略整个对象范围。最近,变压器架构已经部署到WSOL,以捕获具有自我关注机制和多层的Perceptron结构的远程特征依赖性。然而,变压器缺乏CNN所固有的局部感应偏差,因此可以恶化WSOL中的局部特征细节。在本文中,我们提出了一种基于变压器的新型框架,称为LCTR(局部连续性变压器),该框架被称为LCTR(局部连续性变压器),该框架在长期特征依赖项中提高全局特征的本地感知能力。为此,我们提出了一个关系的修补程序注意模块(RPAM),其考虑全球跨补丁信息。我们进一步设计了一个CUE挖掘模块(CDM),它利用本地特征来指导模型的学习趋势,以突出弱局部响应。最后,在两个广泛使用的数据集,即Cub-200-2011和ILSVRC上进行综合实验,以验证我们方法的有效性。
translated by 谷歌翻译
在本文中,我们通过利用视觉数据中的空间稀疏性提出了一种新的模型加速方法。我们观察到,视觉变压器中的最终预测仅基于最有用的令牌的子集,这足以使图像识别。基于此观察,我们提出了一个动态的令牌稀疏框架,以根据加速视觉变压器的输入逐渐和动态地修剪冗余令牌。具体而言,我们设计了一个轻量级预测模块,以估计给定当前功能的每个令牌的重要性得分。该模块被添加到不同的层中以层次修剪冗余令牌。尽管该框架的启发是我们观察到视觉变压器中稀疏注意力的启发,但我们发现自适应和不对称计算的想法可能是加速各种体系结构的一般解决方案。我们将我们的方法扩展到包括CNN和分层视觉变压器在内的层次模型,以及更复杂的密集预测任务,这些任务需要通过制定更通用的动态空间稀疏框架,并具有渐进性的稀疏性和非对称性计算,用于不同空间位置。通过将轻质快速路径应用于少量的特征,并使用更具表现力的慢速路径到更重要的位置,我们可以维护特征地图的结构,同时大大减少整体计算。广泛的实验证明了我们框架对各种现代体系结构和不同视觉识别任务的有效性。我们的结果清楚地表明,动态空间稀疏为模型加速提供了一个新的,更有效的维度。代码可从https://github.com/raoyongming/dynamicvit获得
translated by 谷歌翻译
弱监督的语义分割(WSSS)是具有挑战性的,特别是当使用图像级标签来监督像素级预测时。为了弥合它们的差距,通常生成一个类激活图(CAM)以提供像素级伪标签。卷积神经网络中的凸轮患有部分激活,即,仅激活最多的识别区域。另一方面,基于变压器的方法在探索具有长范围依赖性建模的全球背景下,非常有效,可能会减轻“部分激活”问题。在本文中,我们提出了基于第一变压器的WSSS方法,并介绍了梯度加权元素明智的变压器注意图(GetAn)。 GetaN显示所有特征映射元素的精确激活,跨越变压器层显示对象的不同部分。此外,我们提出了一种激活感知标签完成模块来生成高质量的伪标签。最后,我们将我们的方法纳入了使用双向向上传播的WSS的结束框架。 Pascal VOC和Coco的广泛实验表明,我们的结果通过显着的保证金击败了最先进的端到端方法,并且优于大多数多级方法.M大多数多级方法。
translated by 谷歌翻译
单图级注释仅正确地描述了图像内容的通常很小的子集,尤其是在描绘了复杂的现实世界场景时。尽管这在许多分类方案中可能是可以接受的,但对于培训时间和测试时间之间有很大差异的应用程序,它构成了一个重大挑战。在本文中,我们仔细研究了$ \ textit {少数图解} $的含义。将输入样品分成贴片并通过视觉变压器的帮助来编码它们,使我们能够在图像跨图像和独立于其各自类别的局部区域之间建立语义对应关系。然后,最有用的补丁程序嵌入手头的任务是通过推理时通过在线优化设置的支持的函数,此外还提供了图像中“ $ \ textit {最重要的} $”的视觉解释性。我们基于通过掩盖图像建模对网络进行无监督培训的最新进展,以克服缺乏细粒度的标签,并了解数据的更一般统计结构,同时避免使用负面图像级注释影响,$ \ textit {aka} $监督坍塌。实验结果表明,我们的方法的竞争力,在四个流行的少数几个分类基准测试基准中获得了新的最先进的结果,价格为$ 5 $ - 弹跳和$ 1 $ $ - 景点。
translated by 谷歌翻译
可以通过对手动预定义目标的监督(例如,一hot或Hadamard代码)进行深入的表示学习来解决细粒度的视觉分类。这种目标编码方案对于模型间相关性的灵活性较小,并且对稀疏和不平衡的数据分布也很敏感。鉴于此,本文介绍了一种新颖的目标编码方案 - 动态目标关系图(DTRG),作为辅助特征正则化,是一个自生成的结构输出,可根据输入图像映射。具体而言,类级特征中心的在线计算旨在在表示空间中生成跨类别距离,因此可以通过非参数方式通过动态图来描绘。明确最大程度地减少锚定在这些级别中心的阶层内特征变化可以鼓励学习判别特征。此外,由于利用了类间的依赖性,提出的目标图可以减轻代表学习中的数据稀疏性和不稳定。受混合风格数据增强的最新成功的启发,本文将随机性引入了动态目标关系图的软结构,以进一步探索目标类别的关系多样性。实验结果可以证明我们方法对多个视觉分类任务的许多不同基准的有效性,尤其是在流行的细粒对象基准上实现最先进的性能以及针对稀疏和不平衡数据的出色鲁棒性。源代码可在https://github.com/akonlau/dtrg上公开提供。
translated by 谷歌翻译
已经发现基于混合的增强对于培训期间的概括模型有效,特别是对于视觉变压器(VITS),因为它们很容易过度装备。然而,先前的基于混合的方法具有潜在的先验知识,即目标的线性内插比应保持与输入插值中提出的比率相同。这可能导致一个奇怪的现象,有时由于增强中的随机过程,混合图像中没有有效对象,但标签空间仍然存在响应。为了弥合输入和标签空间之间的这种差距,我们提出了透明度,该差别将基于视觉变压器的注意图混合标签。如果受关注图的相应输入图像加权,则标签的置信度将会更大。传输令人尴尬地简单,可以在几行代码中实现,而不会在不引入任何额外的参数和拖鞋到基于Vit的模型。实验结果表明,我们的方法可以在想象集分类上一致地始终改善各种基于Vit的模型。在ImageNet上预先接受过扫描后,基于Vit的模型还展示了对语义分割,对象检测和实例分割的更好的可转换性。当在评估4个不同的基准时,传输展示展示更加强劲。代码将在https://github.com/beckschen/transmix上公开提供。
translated by 谷歌翻译
弱监督的对象定位(WSOL)旨在仅通过使用图像级标签来定位对象,由于其在实际应用中的注释成本较低,因此引起了很多关注。最近的研究利用自我发挥作用在视觉变压器中对远程依赖性的优势来重新活跃的语义区域,旨在避免在传统的类激活映射(CAM)中进行部分激活。但是,变压器中的远程建模忽略了对象的固有空间连贯性,并且通常会扩散远离对象边界的语义感知区域,从而使定位结果明显更大或更小。为了解决此类问题,我们引入了一个简单而有效的空间校准模块(SCM),以进行准确的WSOL,将斑块令牌的语义相似性及其空间关系融合到统一的扩散模型中。具体而言,我们引入了一个可学习的参数,以动态调整语义相关性和空间上下文强度,以进行有效的信息传播。实际上,SCM被设计为变压器的外部模块,可以在推断过程中删除以降低计算成本。对象敏感的定位能力通过在训练阶段的优化中隐式嵌入到变压器编码中。它使生成的注意力图能够捕获锐利对象边界并过滤对象 - 近距离背景区域。广泛的实验结果证明了该方法的有效性,该方法在CUB-200和Imagenet-1K基准测试基准上的表现明显优于其对应物TS-CAM。该代码可从https://github.com/164140757/scm获得。
translated by 谷歌翻译
很少有细粒度的学习旨在将查询图像分类为具有细粒度差异的一组支持类别之一。尽管学习不同对象通过深神网络的局部差异取得了成功,但如何在基于变压器的架构中利用查询支持的跨图像对象语义关系在几个摄像机的细粒度场景中仍未得到充分探索。在这项工作中,我们提出了一个基于变压器的双螺旋模型,即HelixFormer,以双向和对称方式实现跨图像对象语义挖掘。 HelixFormer由两个步骤组成:1)跨不同分支的关系挖掘过程(RMP),以及2)在每个分支中表示增强过程(REP)。通过设计的RMP,每个分支都可以使用来自另一个分支的信息提取细粒对象级跨图义语义关系图(CSRMS),从而确保在语义相关的本地对象区域中更好地跨图像相互作用。此外,借助CSRMS,开发的REP可以增强每个分支中发现的与语义相关的局部区域的提取特征,从而增强模型区分细粒物体的细微特征差异的能力。在五个公共细粒基准上进行的广泛实验表明,螺旋形式可以有效地增强识别细颗粒物体的跨图像对象语义关系匹配,从而在1次以下的大多数先进方法中实现更好的性能,并且5击场景。我们的代码可在以下网址找到:https://github.com/jiakangyuan/helixformer
translated by 谷歌翻译
We propose a novel deep neural network architecture to learn interpretable representation for medical image analysis. Our architecture generates a global attention for region of interest, and then learns bag of words style deep feature embeddings with local attention. The global, and local feature maps are combined using a contemporary transformer architecture for highly accurate Gallbladder Cancer (GBC) detection from Ultrasound (USG) images. Our experiments indicate that the detection accuracy of our model beats even human radiologists, and advocates its use as the second reader for GBC diagnosis. Bag of words embeddings allow our model to be probed for generating interpretable explanations for GBC detection consistent with the ones reported in medical literature. We show that the proposed model not only helps understand decisions of neural network models but also aids in discovery of new visual features relevant to the diagnosis of GBC. Source-code and model will be available at https://github.com/sbasu276/RadFormer
translated by 谷歌翻译