本文提出了一种新的方法,可以从一组代理的行为痕迹中预测团队绩效。这个时空预测问题与体育分析挑战(例如教练和对手建模)非常相关。我们证明了我们提出的模型,空间时间图卷积网络(ST-GCN),优于其他分类技术,可以从玩家运动和游戏功能的短段预测游戏得分。我们提出的架构使用图形卷积网络来捕获团队成员和封闭式复发单元之间的空间关系,以分析动态运动信息。进行了消融评估,以证明我们体系结构各个方面的贡献。
translated by 谷歌翻译
使用图形卷积网络(GCN)构建时空网络已成为预测交通信号的最流行方法之一。但是,当使用GCN进行交通速度预测时,常规方法通常将传感器之间的关系作为均匀图,并使用传感器累积的数据来学习邻接矩阵。但是,传感器之间的空间相关性并未指定为一个,而是从各种观点方面定义不同。为此,我们旨在研究流量信号数据中固有的异质特征,以以各种方式学习传感器之间的隐藏关系。具体而言,我们设计了一种方法来通过将传感器之间的空间关系分为静态和动态模块来构造每个模块的异质图。我们提出了一个基于网络分散注意力的基于异质性 - 感知图形卷积网络(HAGCN)方法,该方法通过在异质图中考虑每个通道的重要性来汇总相邻节点的隐藏状态。实际流量数据集的实验结果验证了所提出的方法的有效性,比现有模型取得了6.35%的改善,并实现了最先进的预测性能。
translated by 谷歌翻译
交通预测对于新时代智能城市的交通建设至关重要。但是,流量数据的复杂空间和时间依赖性使流量预测极具挑战性。大多数现有的流量预测方法都依赖于预定义的邻接矩阵来对时空依赖性建模。但是,道路交通状态是高度实时的,因此邻接矩阵应随着时间的推移而动态变化。本文介绍了一个新的多空间融合图复发网络(MSTFGRN),以解决上述问题。该网络提出了一种数据驱动的加权邻接矩阵生成方法,以补偿预定义的邻接矩阵未反映的实时空间依赖性。它还通过在不同矩的平行时空关系上执行新的双向时空融合操作来有效地学习隐藏的时空依赖性。最后,通过将全局注意机制集成到时空融合模块中,同时捕获了全局时空依赖性。对四个大型现实世界流量数据集进行的广泛试验表明,与替代基线相比,我们的方法实现了最先进的性能。
translated by 谷歌翻译
近年来,图形神经网络(GNN)与复发性神经网络(RNN)的变体相结合,在时空预测任务中达到了最先进的性能。对于流量预测,GNN模型使用道路网络的图形结构来解释链接和节点之间的空间相关性。最近的解决方案要么基于复杂的图形操作或避免预定义的图。本文提出了一种新的序列结构,以使用具有稀疏体系结构的GNN-RNN细胞在多个抽象的抽象上提取时空相关性,以减少训练时间与更复杂的设计相比。通过多个编码器编码相同的输入序列,并随着编码层的增量增加,使网络能够通过多级抽象来学习一般和详细的信息。我们进一步介绍了来自加拿大蒙特利尔的街道细分市场流量数据的新基准数据集。与高速公路不同,城市路段是循环的,其特征是复杂的空间依赖性。与基线方法相比,一小时预测的实验结果和我们的MSLTD街道级段数据集对我们的模型提高了7%以上,同时将计算资源要求提高了一半以上竞争方法。
translated by 谷歌翻译
准确的交通预测对于智能城市实现交通控制,路线计划和流动检测至关重要。尽管目前提出了许多时空方法,但这些方法在同步捕获流量数据的时空依赖性方面缺陷。此外,大多数方法忽略了随着流量数据的变化而产生的道路网络节点之间的动态变化相关性。我们建议基于神经网络的时空交互式动态图卷积网络(STIDGCN),以应对上述流量预测的挑战。具体而言,我们提出了一个交互式动态图卷积结构,该结构将序列划分为间隔,并通过交互式学习策略同步捕获流量数据的时空依赖性。交互式学习策略使StidGCN有效地预测。我们还提出了一个新颖的动态图卷积模块,以捕获由图生成器和融合图卷积组成的流量网络中动态变化的相关性。动态图卷积模块可以使用输入流量数据和预定义的图形结构来生成图形结构。然后将其与定义的自适应邻接矩阵融合,以生成动态邻接矩阵,该矩阵填充了预定义的图形结构,并模拟了道路网络中节点之间的动态关联的产生。在四个现实世界流量流数据集上进行的广泛实验表明,StidGCN的表现优于最先进的基线。
translated by 谷歌翻译
由于流量大数据的增加,交通预测逐渐引起了研究人员的注意力。因此,如何在交通数据中挖掘复杂的时空相关性以预测交通状况更准确地成为难题。以前的作品组合图形卷积网络(GCNS)和具有深度序列模型的自我关注机制(例如,复发性神经网络),分别捕获时空相关性,忽略时间和空间的关系。此外,GCNS受到过平滑问题的限制,自我关注受到二次问题的限制,导致GCN缺乏全局代表能力,自我注意力效率低下捕获全球空间依赖性。在本文中,我们提出了一种新颖的交通预测深入学习模型,命名为多语境意识的时空关节线性关注(STJLA),其对时空关节图应用线性关注以捕获所有时空之间的全球依赖性节点有效。更具体地,STJLA利用静态结构上下文和动态语义上下文来提高模型性能。基于Node2VEC和单热编码的静态结构上下文丰富了时空位置信息。此外,基于多头扩散卷积网络的动态空间上下文增强了局部空间感知能力,并且基于GRU的动态时间上下文分别稳定了线性关注的序列位置信息。在两个现实世界交通数据集,英格兰和PEMSD7上的实验表明,我们的Stjla可以获得高达9.83%和3.08%,在最先进的基线上的衡量标准的准确性提高。
translated by 谷歌翻译
交通流量预测是智能运输系统的重要组成部分,从而受到了研究人员的关注。但是,交通道路之间的复杂空间和时间依赖性使交通流量的预测具有挑战性。现有方法通常是基于图形神经网络,使用交通网络的预定义空间邻接图来建模空间依赖性,而忽略了道路节点之间关系的动态相关性。此外,他们通常使用独立的时空组件来捕获时空依赖性,并且不会有效地对全局时空依赖性进行建模。本文提出了一个新的时空因果图形注意网络(STCGAT),以解决上述挑战。在STCGAT中,我们使用一种节点嵌入方法,可以在每个时间步骤中自适应生成空间邻接子图,而无需先验地理知识和对不同时间步骤动态生成图的拓扑的精细颗粒建模。同时,我们提出了一个有效的因果时间相关成分,其中包含节点自适应学习,图形卷积以及局部和全局因果关系卷积模块,以共同学习局部和全局时空依赖性。在四个真正的大型流量数据集上进行的广泛实验表明,我们的模型始终优于所有基线模型。
translated by 谷歌翻译
Reliable forecasting of traffic flow requires efficient modeling of traffic data. Different correlations and influences arise in a dynamic traffic network, making modeling a complicated task. Existing literature has proposed many different methods to capture the complex underlying spatial-temporal relations of traffic networks. However, methods still struggle to capture different local and global dependencies of long-range nature. Also, as more and more sophisticated methods are being proposed, models are increasingly becoming memory-heavy and, thus, unsuitable for low-powered devices. In this paper, we focus on solving these problems by proposing a novel deep learning framework - STLGRU. Specifically, our proposed STLGRU can effectively capture both local and global spatial-temporal relations of a traffic network using memory-augmented attention and gating mechanism. Instead of employing separate temporal and spatial components, we show that our memory module and gated unit can learn the spatial-temporal dependencies successfully, allowing for reduced memory usage with fewer parameters. We extensively experiment on several real-world traffic prediction datasets to show that our model performs better than existing methods while the memory footprint remains lower. Code is available at \url{https://github.com/Kishor-Bhaumik/STLGRU}.
translated by 谷歌翻译
最近的研究侧重于制定流量预测作为一种时空图形建模问题。它们通常在每个时间步骤构造静态空间图,然后将每个节点连接在相邻时间步骤之间以构造时空图形。在这样的图形中,不同时间步骤的不同节点之间的相关性未明确地反映,这可以限制图形神经网络的学习能力。同时,这些模型在不同时间步骤中使用相同的邻接矩阵时,忽略节点之间的动态时空相关性。为了克服这些限制,我们提出了一种时空关节图卷积网络(StJGCN),用于交通预测在公路网络上的几个时间上限。具体地,我们在任何两个时间步长之间构造预定的和自适应时空关节图(STJG),这代表了全面和动态的时空相关性。我们进一步设计了STJG上的扩张因果时空关节图卷积层,以捕获与多个范围不同的视角的时空依赖关系。提出了一种多范围注意机制来聚合不同范围的信息。四个公共交通数据集的实验表明,STJGCN是计算的高效和优于11个最先进的基线方法。
translated by 谷歌翻译
Spatiotemporal forecasting has various applications in neuroscience, climate and transportation domain. Traffic forecasting is one canonical example of such learning task. The task is challenging due to (1) complex spatial dependency on road networks, (2) non-linear temporal dynamics with changing road conditions and (3) inherent difficulty of long-term forecasting. To address these challenges, we propose to model the traffic flow as a diffusion process on a directed graph and introduce Diffusion Convolutional Recurrent Neural Network (DCRNN), a deep learning framework for traffic forecasting that incorporates both spatial and temporal dependency in the traffic flow. Specifically, DCRNN captures the spatial dependency using bidirectional random walks on the graph, and the temporal dependency using the encoder-decoder architecture with scheduled sampling. We evaluate the framework on two real-world large scale road network traffic datasets and observe consistent improvement of 12% -15% over state-of-the-art baselines.
translated by 谷歌翻译
由于运输网络中复杂的时空依赖性,准确的交通预测是智能运输系统中一项艰巨的任务。许多现有的作品利用复杂的时间建模方法与图形卷积网络(GCN)合并,以捕获短期和长期时空依赖性。但是,这些具有复杂设计的分离模块可以限制时空表示学习的有效性和效率。此外,大多数以前的作品都采用固定的图形构造方法来表征全局时空关系,这限制了模型在不同时间段甚至不同的数据方案中的学习能力。为了克服这些局限性,我们提出了一个自动扩张的时空同步图网络,称为Auto-DSTSGN用于流量预测。具体而言,我们设计了自动扩张的时空同步图(自动-DSTSG)模块,以捕获短期和长期时空相关性,通过在增加顺序的扩张因子中堆叠更深的层。此外,我们提出了一种图形结构搜索方法,以自动构建可以适应不同数据方案的时空同步图。在四个现实世界数据集上进行的广泛实验表明,与最先进的方法相比,我们的模型可以取得约10%的改善。源代码可在https://github.com/jinguangyin/auto-dstsgn上找到。
translated by 谷歌翻译
Traffic forecasting has attracted widespread attention recently. In reality, traffic data usually contains missing values due to sensor or communication errors. The Spatio-temporal feature in traffic data brings more challenges for processing such missing values, for which the classic techniques (e.g., data imputations) are limited: 1) in temporal axis, the values can be randomly or consecutively missing; 2) in spatial axis, the missing values can happen on one single sensor or on multiple sensors simultaneously. Recent models powered by Graph Neural Networks achieved satisfying performance on traffic forecasting tasks. However, few of them are applicable to such a complex missing-value context. To this end, we propose GCN-M, a Graph Convolutional Network model with the ability to handle the complex missing values in the Spatio-temporal context. Particularly, we jointly model the missing value processing and traffic forecasting tasks, considering both local Spatio-temporal features and global historical patterns in an attention-based memory network. We propose as well a dynamic graph learning module based on the learned local-global features. The experimental results on real-life datasets show the reliability of our proposed method.
translated by 谷歌翻译
天气预报是一项有吸引力的挑战性任务,因为它对人类生活和大气运动的复杂性的影响。在大量历史观察到的时间序列数据的支持下,该任务适用于数据驱动的方法,尤其是深层神经网络。最近,基于图神经网络(GNN)方法在时空预测方面取得了出色的性能。但是,基于规范的GNNS方法仅分别对每个站的气象变量的局部图或整个车站的全局图进行建模,从而缺乏不同站点的气象变量之间的信息相互作用。在本文中,我们提出了一种新型的层次时空图形神经网络(Histgnn),以模拟多个站点气象变量之间的跨区域时空相关性。自适应图学习层和空间图卷积用于构建自学习图,并研究可变级别和站点级别图的节点之间的隐藏依赖性。为了捕获时间模式,扩张的成立为GATE时间卷积的主干旨在对长而各种气象趋势进行建模。此外,提出了动态的交互学习来构建在层次图中传递的双向信息。三个现实世界中的气象数据集的实验结果表明,史基元超过7个基准的卓越性能,并且将误差降低了4.2%至11.6%,尤其是与最先进的天气预测方法相比。
translated by 谷歌翻译
Modeling multivariate time series has long been a subject that has attracted researchers from a diverse range of fields including economics, finance, and traffic. A basic assumption behind multivariate time series forecasting is that its variables depend on one another but, upon looking closely, it's fair to say that existing methods fail to fully exploit latent spatial dependencies between pairs of variables. In recent years, meanwhile, graph neural networks (GNNs) have shown high capability in handling relational dependencies. GNNs require well-defined graph structures for information propagation which means they cannot be applied directly for multivariate time series where the dependencies are not known in advance. In this paper, we propose a general graph neural network framework designed specifically for multivariate time series data. Our approach automatically extracts the uni-directed relations among variables through a graph learning module, into which external knowledge like variable attributes can be easily integrated. A novel mix-hop propagation layer and a dilated inception layer are further proposed to capture the spatial and temporal dependencies within the time series. The graph learning, graph convolution, and temporal convolution modules are jointly learned in an end-to-end framework. Experimental results show that our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets and achieves on-par performance with other approaches on two traffic datasets which provide extra structural information. CCS CONCEPTS• Computing methodologies → Neural networks; Artificial intelligence.
translated by 谷歌翻译
准确的交通状况预测为车辆环境协调和交通管制任务提供了坚实的基础。由于道路网络数据在空间分布中的复杂性以及深度学习方法的多样性,有效定义流量数据并充分捕获数据中复杂的空间非线性特征变得具有挑战性。本文将两种分层图池方法应用于流量预测任务,以减少图形信息冗余。首先,本文验证了流量预测任务中层次图池方法的有效性。分层图合并方法与其他基线在预测性能上形成鲜明对比。其次,应用了两种主流分层图池方法,节点群集池和节点下降池,用于分析流量预测中的优势和弱点。最后,对于上述图神经网络,本文比较了不同图网络输入对流量预测准确性的预测效应。分析和汇总定义图网络的有效方法。
translated by 谷歌翻译
Accurate spatial-temporal traffic flow forecasting is essential for helping traffic managers to take control measures and drivers to choose the optimal travel routes. Recently, graph convolutional networks (GCNs) have been widely used in traffic flow prediction owing to their powerful ability to capture spatial-temporal dependencies. The design of the spatial-temporal graph adjacency matrix is a key to the success of GCNs, and it is still an open question. This paper proposes reconstructing the binary adjacency matrix via tensor decomposition, and a traffic flow forecasting method is proposed. First, we reformulate the spatial-temporal fusion graph adjacency matrix into a three-way adjacency tensor. Then, we reconstructed the adjacency tensor via Tucker decomposition, wherein more informative and global spatial-temporal dependencies are encoded. Finally, a Spatial-temporal Synchronous Graph Convolutional module for localized spatial-temporal correlations learning and a Dilated Convolution module for global correlations learning are assembled to aggregate and learn the comprehensive spatial-temporal dependencies of the road network. Experimental results on four open-access datasets demonstrate that the proposed model outperforms state-of-the-art approaches in terms of the prediction performance and computational cost.
translated by 谷歌翻译
本文旨在统一非欧几里得空间中的空间依赖性和时间依赖性,同时捕获流量数据的内部空间依赖性。对于具有拓扑结构的时空属性实体,时空是连续的和统一的,而每个节点的当前状态都受到每个邻居的变异时期的邻居的过去状态的影响。大多数用于流量预测研究的空间依赖性和时间相关性的空间神经网络在处理中分别损害了时空完整性,而忽略了邻居节点的时间依赖期可以延迟和动态的事实。为了建模这种实际条件,我们提出了一种新型的空间 - 周期性图神经网络,将空间和时间视为不可分割的整体,以挖掘时空图,同时通过消息传播机制利用每个节点的发展时空依赖性。进行消融和参数研究的实验已经验证了拟议的遍及术的有效性,并且可以从https://github.com/nnzhan/traversenet中找到详细的实现。
translated by 谷歌翻译
流量预测是智能交通系统中时空学习任务的规范示例。现有方法在图形卷积神经操作员中使用预定的矩阵捕获空间依赖性。但是,显式的图形结构损失了节点之间关系的一些隐藏表示形式。此外,传统的图形卷积神经操作员无法在图上汇总远程节点。为了克服这些限制,我们提出了一个新型的网络,空间 - 周期性自适应图卷积,并通过注意力网络(Staan)进行交通预测。首先,我们采用自适应依赖性矩阵,而不是在GCN处理过程中使用预定义的矩阵来推断节点之间的相互依存关系。其次,我们集成了基于图形注意力网络的PW注意,该图形是为全局依赖性设计的,而GCN作为空间块。更重要的是,在我们的时间块中采用了堆叠的散布的1D卷积,具有长期预测的效率,用于捕获不同的时间序列。我们在两个现实世界数据集上评估了我们的Staan,并且实验验证了我们的模型优于最先进的基线。
translated by 谷歌翻译
多变量时间序列(MTS)预测在许多智能应用中引起了很多关注。它不是一个琐碎的任务,因为我们需要考虑一个可变的依赖关系和可变间依赖关系。但是,现有的作品是针对特定场景设计的,需要很多域知识和专家努力,这难以在不同的场景之间传输。在本文中,我们提出了一种尺度意识的神经结构,用于MTS预测(SNAS4MTF)的搜索框架。多尺度分解模块将原始时间序列转换为多尺度子系列,可以保留多尺度的时间模式。自适应图形学习模块在没有任何先前知识的情况下,在不同的时间尺度下递送不同的变量间依赖关系。对于MTS预测,搜索空间旨在在每次尺度上捕获可变的可变依赖性和可变间依赖关系。在端到端框架中共同学习多尺度分解,自适应图学习和神经架构搜索模块。两个现实世界数据集的大量实验表明,与最先进的方法相比,SNAS4MTF实现了有希望的性能。
translated by 谷歌翻译
Spatial-temporal graph modeling is an important task to analyze the spatial relations and temporal trends of components in a system. Existing approaches mostly capture the spatial dependency on a fixed graph structure, assuming that the underlying relation between entities is pre-determined. However, the explicit graph structure (relation) does not necessarily reflect the true dependency and genuine relation may be missing due to the incomplete connections in the data. Furthermore, existing methods are ineffective to capture the temporal trends as the RNNs or CNNs employed in these methods cannot capture long-range temporal sequences. To overcome these limitations, we propose in this paper a novel graph neural network architecture, Graph WaveNet, for spatial-temporal graph modeling. By developing a novel adaptive dependency matrix and learn it through node embedding, our model can precisely capture the hidden spatial dependency in the data. With a stacked dilated 1D convolution component whose receptive field grows exponentially as the number of layers increases, Graph WaveNet is able to handle very long sequences. These two components are integrated seamlessly in a unified framework and the whole framework is learned in an end-to-end manner. Experimental results on two public traffic network datasets, METR-LA and PEMS-BAY, demonstrate the superior performance of our algorithm.
translated by 谷歌翻译