本文提出了一个4D主链,以供长期点云视频理解。捕获空间上下文的一种典型方法是使用无层次结构的4DCONV或变压器。但是,由于相机运动,场景变化,采样模式和4D数据的复杂性,这些方法既没有有效也没有高效的效率。为了解决这些问题,我们利用原始平面作为中层表示,以捕获4D点云视频中的长期空间上下文,并提出了一个名为Point Point Primitive Transformer(PPTR)的新型层次骨架,主要由该骨架组成,该骨架主要由主要的点变压器和原始变压器。广泛的实验表明,PPTR在不同任务上优于先前的艺术状态
translated by 谷歌翻译
Recent work on 4D point cloud sequences has attracted a lot of attention. However, obtaining exhaustively labeled 4D datasets is often very expensive and laborious, so it is especially important to investigate how to utilize raw unlabeled data. However, most existing self-supervised point cloud representation learning methods only consider geometry from a static snapshot omitting the fact that sequential observations of dynamic scenes could reveal more comprehensive geometric details. And the video representation learning frameworks mostly model motion as image space flows, let alone being 3D-geometric-aware. To overcome such issues, this paper proposes a new 4D self-supervised pre-training method called Complete-to-Partial 4D Distillation. Our key idea is to formulate 4D self-supervised representation learning as a teacher-student knowledge distillation framework and let the student learn useful 4D representations with the guidance of the teacher. Experiments show that this approach significantly outperforms previous pre-training approaches on a wide range of 4D point cloud sequence understanding tasks including indoor and outdoor scenarios.
translated by 谷歌翻译
变压器在自然语言处理中的成功最近引起了计算机视觉领域的关注。由于能够学习长期依赖性,变压器已被用作广泛使用的卷积运算符的替代品。事实证明,这种替代者在许多任务中都取得了成功,其中几种最先进的方法依靠变压器来更好地学习。在计算机视觉中,3D字段还见证了使用变压器来增加3D卷积神经网络和多层感知器网络的增加。尽管许多调查都集中在视力中的变压器上,但由于与2D视觉相比,由于数据表示和处理的差异,3D视觉需要特别注意。在这项工作中,我们介绍了针对不同3D视觉任务的100多种变压器方法的系统和彻底审查,包括分类,细分,检测,完成,姿势估计等。我们在3D Vision中讨论了变形金刚的设计,该设计使其可以使用各种3D表示形式处理数据。对于每个应用程序,我们强调了基于变压器的方法的关键属性和贡献。为了评估这些方法的竞争力,我们将它们的性能与12个3D基准测试的常见非转化方法进行了比较。我们通过讨论3D视觉中变压器的不同开放方向和挑战来结束调查。除了提出的论文外,我们的目标是频繁更新最新的相关论文及其相应的实现:https://github.com/lahoud/3d-vision-transformers。
translated by 谷歌翻译
3D人类行动的点云序列表现出无序的帧内空间信息和订购的帧间时间信息。为了捕获点云序列的时空结构,通常构造围绕质心周围的跨框架时空局部邻域。然而,时空本地社区的计算昂贵的施工过程严重限制了模型的平行性。此外,在时空局部学习中同样地处理空间和时间信息是不合理的,因为人类的动作沿空间尺寸复杂并且沿着时间尺寸简单。在本文中,为了避免时空局部编码,我们提出了一个强的并行化点云序列网络,称为用于3D动作识别的顺序点。顺序pointNet由两个串行模块,即帧内外观编码模块和帧间运动编码模块组成。为了对人类动作的强空间结构进行建模,每个点云帧在帧内帧内外观编码模块中并行处理,并且每个帧的特征向量被输出以形成特征向量序列,其表征沿时间维度的静态外观变化的变化。为了对人类动作的弱时间变化进行建模,在帧间运动编码模块中,在特征向量序列上实现时间位置编码和分层金字塔汇集策略。另外,为了更好地探索时空内容,在执行端到端的3D动作识别之前聚合人类运动的多个级别特征。在三个公共数据集上进行的广泛实验表明,序贯POINTNETNET优于最新的方法。
translated by 谷歌翻译
变压器一直是自然语言处理(NLP)和计算机视觉(CV)革命的核心。 NLP和CV的显着成功启发了探索变压器在点云处理中的使用。但是,变压器如何应对点云的不规则性和无序性质?变压器对于不同的3D表示(例如,基于点或体素)的合适性如何?各种3D处理任务的变压器有多大的能力?截至目前,仍然没有对这些问题的研究进行系统的调查。我们第一次为3D点云分析提供了越来越受欢迎的变压器的全面概述。我们首先介绍变压器体系结构的理论,并在2D/3D字段中审查其应用程序。然后,我们提出三种不同的分类法(即实现 - 数据表示和基于任务),它们可以从多个角度对当前的基于变压器的方法进行分类。此外,我们介绍了研究3D中自我注意机制的变异和改进的结果。为了证明变压器在点云分析中的优势,我们提供了基于各种变压器的分类,分割和对象检测方法的全面比较。最后,我们建议三个潜在的研究方向,为3D变压器的开发提供福利参考。
translated by 谷歌翻译
与卷积神经网络相比,最近开发的纯变压器架构已经实现了对点云学习基准的有希望的准确性。然而,现有点云变压器是计算昂贵的,因为它们在构建不规则数据时浪费了大量时间。要解决此缺点,我们呈现稀疏窗口注意(SWA)模块,以收集非空体素的粗粒颗粒特征,不仅绕过昂贵的不规则数据结构和无效的空体素计算,还可以获得线性计算复杂性到体素分辨率。同时,要收集关于全球形状的细粒度特征,我们介绍了相对的注意(RA)模块,更强大的自我关注变体,用于对象的刚性变换。我们配备了SWA和RA,我们构建了我们的神经结构,称为PVT,将两个模块集成到Point云学习的联合框架中。与以前的变压器和关注的模型相比,我们的方法平均达到了分类基准和10x推理加速的最高精度为94.0%。广泛的实验还有效地验证了PVT在部分和语义分割基准上的有效性(分别为86.6%和69.2%Miou)。
translated by 谷歌翻译
我们提出了块茎:一种简单的时空视频动作检测解决方案。与依赖于离线演员检测器或手工设计的演员位置假设的现有方法不同,我们建议通过同时执行动作定位和识别从单个表示来直接检测视频中的动作微管。块茎学习一组管芯查询,并利用微调模块来模拟视频剪辑的动态时空性质,其有效地加强了与在时空空间中的演员位置假设相比的模型容量。对于包含过渡状态或场景变更的视频,我们提出了一种上下文意识的分类头来利用短期和长期上下文来加强行动分类,以及用于检测精确的时间动作程度的动作开关回归头。块茎直接产生具有可变长度的动作管,甚至对长视频剪辑保持良好的结果。块茎在常用的动作检测数据集AVA,UCF101-24和JHMDB51-21上优于先前的最先进。
translated by 谷歌翻译
基于激光雷达的3D场景感知是自动驾驶的基本和重要任务。大多数基于激光雷达的3D识别任务的最新方法都集中在单帧3D点云数据上,并且这些方法在这些方法中被忽略。我们认为,整个框架的时间信息为3D场景感知提供了重要的知识,尤其是在驾驶场景中。在本文中,我们专注于空间和时间变化,以更好地探索3D帧的时间信息。我们设计了一个时间变化 - 意识到的插值模块和时间体素点炼油厂,以捕获4D点云中的时间变化。时间变化 - 意识插值通过捕获空间连贯性和时间变化信息来生成从上一个和当前帧的局部特征。时间体素点炼油厂在3D点云序列上构建了时间图,并使用图形卷积模块捕获时间变化。时间体素点炼油厂还将粗素级预测转换为精细的点级预测。通过我们提出的模块,新的网络TVSN在Semantickitti和Semantiposs上实现了最先进的性能。具体而言,我们的方法在MIOU中达到52.5 \%(以前的最佳方法+5.5%)在Semantickitti的多个扫描细分任务上,semanticposs的多个扫描分段任务(63.0%)(以前的最佳方法+2.8%)。
translated by 谷歌翻译
动作检测的任务旨在在每个动作实例中同时推论动作类别和终点的本地化。尽管Vision Transformers推动了视频理解的最新进展,但由于在长时间的视频剪辑中,设计有效的架构以进行动作检测是不平凡的。为此,我们提出了一个有效的层次时空时空金字塔变压器(STPT)进行动作检测,这是基于以下事实:变压器中早期的自我注意力层仍然集中在局部模式上。具体而言,我们建议在早期阶段使用本地窗口注意来编码丰富的局部时空时空表示,同时应用全局注意模块以捕获后期的长期时空依赖性。通过这种方式,我们的STPT可以用冗余的大大减少来编码区域和依赖性,从而在准确性和效率之间进行有希望的权衡。例如,仅使用RGB输入,提议的STPT在Thumos14上获得了53.6%的地图,超过10%的I3D+AFSD RGB模型超过10%,并且对使用其他流量的额外流动功能的表现较少,该流量具有31%的GFLOPS ,它是一个有效,有效的端到端变压器框架,用于操作检测。
translated by 谷歌翻译
视觉变压器正在成为解决计算机视觉问题的强大工具。最近的技术还证明了超出图像域之外的变压器来解决许多与视频相关的任务的功效。其中,由于其广泛的应用,人类的行动识别是从研究界受到特别关注。本文提供了对动作识别的视觉变压器技术的首次全面调查。我们朝着这个方向分析并总结了现有文献和新兴文献,同时突出了适应变形金刚以进行动作识别的流行趋势。由于其专业应用,我们将这些方法统称为``动作变压器''。我们的文献综述根据其架构,方式和预期目标为动作变压器提供了适当的分类法。在动作变压器的背景下,我们探讨了编码时空数据,降低维度降低,框架贴片和时空立方体构造以及各种表示方法的技术。我们还研究了变压器层中时空注意的优化,以处理更长的序列,通常通过减少单个注意操作中的令牌数量。此外,我们还研究了不同的网络学习策略,例如自我监督和零局学习,以及它们对基于变压器的行动识别的相关损失。这项调查还总结了在具有动作变压器重要基准的评估度量评分方面取得的进步。最后,它提供了有关该研究方向的挑战,前景和未来途径的讨论。
translated by 谷歌翻译
有效地对视频中的空间信息进行建模对于动作识别至关重要。为了实现这一目标,最先进的方法通常采用卷积操作员和密集的相互作用模块,例如非本地块。但是,这些方法无法准确地符合视频中的各种事件。一方面,采用的卷积是有固定尺度的,因此在各种尺度的事件中挣扎。另一方面,密集的相互作用建模范式仅在动作 - 欧元零件时实现次优性能,给最终预测带来了其他噪音。在本文中,我们提出了一个统一的动作识别框架,以通过引入以下设计来研究视频内容的动态性质。首先,在提取本地提示时,我们会生成动态尺度的时空内核,以适应各种事件。其次,为了将这些线索准确地汇总为全局视频表示形式,我们建议仅通过变压器在一些选定的前景对象之间进行交互,从而产生稀疏的范式。我们将提出的框架称为事件自适应网络(EAN),因为这两个关键设计都适应输入视频内容。为了利用本地细分市场内的短期运动,我们提出了一种新颖有效的潜在运动代码(LMC)模块,进一步改善了框架的性能。在几个大规模视频数据集上进行了广泛的实验,例如,某种东西,动力学和潜水48,验证了我们的模型是否在低拖鞋上实现了最先进或竞争性的表演。代码可在:https://github.com/tianyuan168326/ean-pytorch中找到。
translated by 谷歌翻译
基于LIDAR的3D对象检测的先前工作主要集中在单帧范式上。在本文中,我们建议通过利用多个帧的时间信息(即点云视频)来检测3D对象。我们从经验上将时间信息分为短期和长期模式。为了编码短期数据,我们提出了一个网格消息传递网络(GMPNET),该网络将每个网格(即分组点)视为节点,并用邻居网格构造K-NN图。为了更新网格的功能,gmpnet迭代从其邻居那里收集信息,从而从附近的框架中挖掘了运动提示。为了进一步汇总长期框架,我们提出了一个细心的时空变压器GRU(AST-GRU),其中包含空间变压器注意(STA)模块和颞变压器注意(TTA)模块。 STA和TTA增强了香草gru,以专注于小物体并更好地对齐运动对象。我们的整体框架支持点云中的在线和离线视频对象检测。我们基于普遍的基于锚和锚的探测器实现算法。关于挑战性的Nuscenes基准的评估结果显示了我们方法的出色表现,在提交论文时,在没有任何铃铛和哨声的情况下在排行榜上获得了第一个。
translated by 谷歌翻译
Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer vision, autonomous driving, and robotics. As a dominating technique in AI, deep learning has been successfully used to solve various 2D vision problems. However, deep learning on point clouds is still in its infancy due to the unique challenges faced by the processing of point clouds with deep neural networks. Recently, deep learning on point clouds has become even thriving, with numerous methods being proposed to address different problems in this area. To stimulate future research, this paper presents a comprehensive review of recent progress in deep learning methods for point clouds. It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation. It also presents comparative results on several publicly available datasets, together with insightful observations and inspiring future research directions.
translated by 谷歌翻译
Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems. Among their salient benefits, Transformers enable modeling long dependencies between input sequence elements and support parallel processing of sequence as compared to recurrent networks e.g., Long short-term memory (LSTM). Different from convolutional networks, Transformers require minimal inductive biases for their design and are naturally suited as set-functions. Furthermore, the straightforward design of Transformers allows processing multiple modalities (e.g., images, videos, text and speech) using similar processing blocks and demonstrates excellent scalability to very large capacity networks and huge datasets. These strengths have led to exciting progress on a number of vision tasks using Transformer networks. This survey aims to provide a comprehensive overview of the Transformer models in the computer vision discipline. We start with an introduction to fundamental concepts behind the success of Transformers i.e., self-attention, large-scale pre-training, and bidirectional feature encoding. We then cover extensive applications of transformers in vision including popular recognition tasks (e.g., image classification, object detection, action recognition, and segmentation), generative modeling, multi-modal tasks (e.g., visual-question answering, visual reasoning, and visual grounding), video processing (e.g., activity recognition, video forecasting), low-level vision (e.g., image super-resolution, image enhancement, and colorization) and 3D analysis (e.g., point cloud classification and segmentation). We compare the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental value. Finally, we provide an analysis on open research directions and possible future works. We hope this effort will ignite further interest in the community to solve current challenges towards the application of transformer models in computer vision.
translated by 谷歌翻译
LIDAR传感器对于自动驾驶汽车和智能机器人的感知系统至关重要。为了满足现实世界应用程序中的实时要求,有必要有效地分割激光扫描。以前的大多数方法将3D点云直接投影到2D球形范围图像上,以便它们可以利用有效的2D卷积操作进行图像分割。尽管取得了令人鼓舞的结果,但在球形投影中,邻里信息尚未保存得很好。此外,在单个扫描分割任务中未考虑时间信息。为了解决这些问题,我们提出了一种新型的语义分割方法,用于元素rangeseg的激光雷达序列,其中引入了新的范围残差图像表示以捕获空间时间信息。具体而言,使用元内核来提取元特征,从而减少了2D范围图像坐标输入和3D笛卡尔坐标输出之间的不一致。有效的U-NET主链用于获得多尺度功能。此外,特征聚合模块(FAM)增强了范围通道的作用,并在不同级别上汇总特征。我们已经进行了广泛的实验,以评估semantickitti和semanticposs。有希望的结果表明,我们提出的元rangeseg方法比现有方法更有效。我们的完整实施可在https://github.com/songw-zju/meta-rangeseg上公开获得。
translated by 谷歌翻译
自动手术场景细分是促进现代手术剧院认知智能的基础。以前的作品依赖于常规的聚合模块(例如扩张的卷积,卷积LSTM),仅利用局部环境。在本文中,我们提出了一个新颖的框架STSWINCL,该框架通过逐步捕获全球环境来探讨互补的视频内和访问间关系以提高细分性能。我们首先开发了层次结构变压器,以捕获视频内关系,其中包括来自邻居像素和以前的帧的富裕空间和时间提示。提出了一个联合时空窗口移动方案,以有效地将这两个线索聚集到每个像素嵌入中。然后,我们通过像素到像素对比度学习探索视频间的关系,该学习很好地结构了整体嵌入空间。开发了一个多源对比度训练目标,可以将视频中的像素嵌入和基础指导分组,这对于学习整个数据的全球属性至关重要。我们在两个公共外科视频基准测试中广泛验证了我们的方法,包括Endovis18 Challenge和Cadis数据集。实验结果证明了我们的方法的有希望的性能,这始终超过了先前的最新方法。代码可在https://github.com/yuemingjin/stswincl上找到。
translated by 谷歌翻译
自我关注已成为最近网络架构的一个组成部分,例如,统治主要图像和视频基准的变压器。这是因为自我关注可以灵活地模拟远程信息。出于同样的原因,研究人员最近使尝试恢复多层Perceptron(MLP)并提出一些类似MLP的架构,显示出极大的潜力。然而,当前的MLP样架构不擅长捕获本地细节并缺乏对图像和/或视频中的核心细节的逐步了解。为了克服这个问题,我们提出了一种新颖的Morphmlp架构,该架构专注于在低级层处捕获本地细节,同时逐渐改变,以专注于高级层的长期建模。具体地,我们设计一个完全连接的层,称为Morphfc,两个可变过滤器,其沿着高度和宽度尺寸逐渐地发展其接收领域。更有趣的是,我们建议灵活地调整视频域中的Morphfc层。为了我们最好的知识,我们是第一个创建类似MLP骨干的用于学习视频表示的骨干。最后,我们对图像分类,语义分割和视频分类进行了广泛的实验。我们的Morphmlp,如此自我关注的自由骨干,可以与基于自我关注的型号一样强大。
translated by 谷歌翻译
变压器在图像处理领域取得了显着的成就。受到这一巨大成功的启发,变形金刚在3D点云处理中的应用引起了越来越多的关注。本文提出了一个新颖的点云表示学习网络,具有双重自我注意的3D点云变压器(3DPCT)和一个编码器解码器结构。具体而言,3DPCT具有一个层次编码器,该编码器包含两个用于分类任务的局部全球双重注意模块(分段任务的三个模块),每个模块都包含一个局部特征聚合(LFA)块和全局特征学习( GFL)块。 GFL块是双重的自我注意事项,既有在点上的自我注意力,又可以提高特征提取。此外,在LFA中,为更好地利用了提取的本地信息,设计了一种新颖的点自我发明模型,称为点斑点自我注意力(PPSA)。在分类和分割数据集上都评估了性能,其中包含合成数据和现实世界数据。广泛的实验表明,所提出的方法在分类和分割任务上都达到了最新的结果。
translated by 谷歌翻译
In recent years, the Transformer architecture has shown its superiority in the video-based person re-identification task. Inspired by video representation learning, these methods mainly focus on designing modules to extract informative spatial and temporal features. However, they are still limited in extracting local attributes and global identity information, which are critical for the person re-identification task. In this paper, we propose a novel Multi-Stage Spatial-Temporal Aggregation Transformer (MSTAT) with two novel designed proxy embedding modules to address the above issue. Specifically, MSTAT consists of three stages to encode the attribute-associated, the identity-associated, and the attribute-identity-associated information from the video clips, respectively, achieving the holistic perception of the input person. We combine the outputs of all the stages for the final identification. In practice, to save the computational cost, the Spatial-Temporal Aggregation (STA) modules are first adopted in each stage to conduct the self-attention operations along the spatial and temporal dimensions separately. We further introduce the Attribute-Aware and Identity-Aware Proxy embedding modules (AAP and IAP) to extract the informative and discriminative feature representations at different stages. All of them are realized by employing newly designed self-attention operations with specific meanings. Moreover, temporal patch shuffling is also introduced to further improve the robustness of the model. Extensive experimental results demonstrate the effectiveness of the proposed modules in extracting the informative and discriminative information from the videos, and illustrate the MSTAT can achieve state-of-the-art accuracies on various standard benchmarks.
translated by 谷歌翻译
时空卷积通常无法学习视频中的运动动态,因此在野外的视频理解需要有效的运动表示。在本文中,我们提出了一种基于时空自相似性(STS)的丰富和强大的运动表示。给定一系列帧,STS表示每个局部区域作为空间和时间的邻居的相似度。通过将外观特征转换为关系值,它使学习者能够更好地识别空间和时间的结构模式。我们利用了整个STS,让我们的模型学会从中提取有效的运动表示。建议的神经块被称为自拍,可以轻松插入神经架构中,并在没有额外监督的情况下训练结束。在空间和时间内具有足够的邻域,它有效地捕获视频中的长期交互和快速运动,导致强大的动作识别。我们的实验分析证明了其对运动建模方法的优越性以及与直接卷积的时空特征的互补性。在标准动作识别基准测试中,某事-V1&V2,潜水-48和FineGym,该方法实现了最先进的结果。
translated by 谷歌翻译