预训练的模型(PTM)正在革新人工智能(AI)技术。但是,PTM培训的硬件要求非常高,使其成为一小部分人的游戏。因此,我们提出了Patrickstar系统,以降低PTM的硬件要求,并使所有人都可以使用。 Patrickstar使用CPU-GPU异质存储空间来存储模型数据。与现有作品不同,我们在内存块中组织模型数据,并在异质内存中动态分配它们。在热身迭代中收集的运行时内存统计的指导下,块在异质内存中有效地精心策划,并生成较低的CPU-GPU数据传输量和较高的带宽利用率。与零冗余优化器的共生,Patrickstar量表在多个节点上均为多个GPU。 %使用数据并行性。该系统可以在更大的型号和较大的批次大小上训练任务,这是现有工程无法完成的。实验结果表明,Patrickstar扩展了模型量表2.27和2.5倍,并且始终显示出更高的执行速度。 Patricstar还成功地在32 GPU集群上成功运行了175B GPT3培训任务。我们的代码可在https://github.com/tencent/patrickstar上公开获取。
translated by 谷歌翻译
Large deep learning models offer significant accuracy gains, but training billions to trillions of parameters is challenging. Existing solutions such as data and model parallelisms exhibit fundamental limitations to fit these models into limited device memory, while obtaining computation, communication and development efficiency. We develop a novel solution, Zero Redundancy Optimizer (ZeRO), to optimize memory, vastly improving training speed while increasing the model size that can be efficiently trained. ZeRO eliminates memory redundancies in data-and model-parallel training while retaining low communication volume and high computational granularity, allowing us to scale the model size proportional to the number of devices with sustained high efficiency. Our analysis on memory requirements and communication volume demonstrates: ZeRO has the potential to scale beyond 1 Trillion parameters using today's hardware.We implement and evaluate ZeRO: it trains large models of over 100B parameter with super-linear speedup on 400 GPUs, achieving throughput of 15 Petaflops. This represents an 8x increase in model size and 10x increase in achievable performance over state-of-the-art. In terms of usability, ZeRO can train large models of up to 13B parameters (e.g., larger than Megatron GPT 8.3B and T5 11B) without requiring model parallelism which is harder for scientists to apply. Last but not the least, researchers have used the system breakthroughs of ZeRO to create the world's largest language model (17B parameters) with record breaking accuracy.
translated by 谷歌翻译
In recent years, the number of parameters of one deep learning (DL) model has been growing much faster than the growth of GPU memory space. People who are inaccessible to a large number of GPUs resort to heterogeneous training systems for storing model parameters in CPU memory. Existing heterogeneous systems are based on parallelization plans in the scope of the whole model. They apply a consistent parallel training method for all the operators in the computation. Therefore, engineers need to pay a huge effort to incorporate a new type of model parallelism and patch its compatibility with other parallelisms. For example, Mixture-of-Experts (MoE) is still incompatible with ZeRO-3 in Deepspeed. Also, current systems face efficiency problems on small scale, since they are designed and tuned for large-scale training. In this paper, we propose Elixir, a new parallel heterogeneous training system, which is designed for efficiency and flexibility. Elixir utilizes memory resources and computing resources of both GPU and CPU. For flexibility, Elixir generates parallelization plans in the granularity of operators. Any new type of model parallelism can be incorporated by assigning a parallel pattern to the operator. For efficiency, Elixir implements a hierarchical distributed memory management scheme to accelerate inter-GPU communications and CPU-GPU data transmissions. As a result, Elixir can train a 30B OPT model on an A100 with 40GB CUDA memory, meanwhile reaching 84% efficiency of Pytorch GPU training. With its super-linear scalability, the training efficiency becomes the same as Pytorch GPU training on multiple GPUs. Also, large MoE models can be trained 5.3x faster than dense models of the same size. Now Elixir is integrated into ColossalAI and is available on its main branch.
translated by 谷歌翻译
变压器模型的成功将深度学习模型量表推向了数十亿个参数。但是,由于单个GPU的内存资源有限,因此仍然缺乏选择最佳并行策略的最佳实践,因为它需要深度学习和并行计算方面的域专业知识。巨大的AI系统通过引入统一的界面来解决上述挑战,以将模型培训的顺序代码扩展到分布式环境。它支持并行训练方法,例如数据,管道,张量和序列并行性,以及与零冗余优化器集成的异质训练方法。与基线系统相比,巨大的AI可以实现大型型号的训练速度的2.76倍。
translated by 谷歌翻译
基础模型正在成为主要的深度学习技术。由于模型参数和训练数据集的大规模,预处理基础模型始终耗时。除了计算密集型外,培训过程还非常密集和沟通密集。这些功能使得需要应用3D并行性,该平行性整合数据并行性,管道模型并行性和张量模型并行性,以实现高训练效率。为了实现这一目标,开发了一些自定义软件框架,例如Megatron-LM和DeepSpeed。但是,当前的3D平行框架仍然符合两个问题:i)它们对模型开发人员不透明,这些开发人员需要手动修改模型以并行化培训。 ii)它们对计算,GPU存储器和网络带宽的利用不足。我们提出了Merak,这是一个自动化的3D并行性深度学习培训框架,并具有高度资源利用。 Merak会自动使用自动模型分区仪部署,该分区仪在模型的代理表示上使用图形sharding算法。 Merak还提出了非侵入性的API,用于通过最小的代码修改来扩展基础模型培训。此外,我们在Merak设计了高性能的3D平行运行时引擎。它使用多种技术来利用可用的培训资源,包括移动的关键路径管道时间表,该计划带来了更高的计算利用率,阶段感知的重新计算,可利用空闲工作者的记忆以及子额定张量的模型并行性,这些模型并联与通信和计算重叠。 64 GPU的实验显示,Merak可以加快在最新的3D平行性框架上,具有1.5、2.5、8.3和20亿的模型框架,最高可达1.42x,1.39x,1.43x和1.61 x分别。
translated by 谷歌翻译
在过去的十年中,深度神经网络(DNNS)的规模成倍增长,只剩下那些具有大量基于数据中心的资源的人具有开发和培训此类模型的能力。对于可能只有有限的资源(例如,单个多GPU服务器)的研究人员的长尾巴的主要挑战之一是GPU内存能力与模型大小相比。问题是如此严重,以至于训练大规模DNN模型的内存需求通常可以超过单个服务器上所有可用GPU的总容量;这个问题只会随着不断增长的模型大小的趋势而变得更糟。当前依赖于虚拟化GPU内存的解决方案(通过向CPU内存交换/从CPU内存)会产生过多的交换开销。在本文中,我们提出了一个新的培训框架,和谐和倡导者,重新思考了DNN框架如何安排计算并移动数据以在单个商品服务器上有效地推动培训大规模模型的边界。在各种大型DNN模型中,Harmony能够将交换负载最多减少两个数量级,并在具有虚拟化内存的高度优化基线上获得高达7.6倍的训练吞吐量加速。
translated by 谷歌翻译
过去的几年见证了基于变压器的模型的成功,其规模和应用方案继续积极发展。变压器模型的当前景观越来越多样化:该模型大小差异很大,最大的参数是最大的。模型特性由于特征的混合物所引入的稀疏性而有所不同。目标应用程序方案可以是关键延迟或面向吞吐量的情况;部署硬件可以是具有不同类型的内存和存储等单身或多GPU系统。随着多样性的增加和变压器模型的快速发展速度,设计高性能和高效的推理系统非常具有挑战性。在本文中,我们提出了DeepSpeed推断,这是用于解决上述挑战的变压器模型推理的全面系统解决方案。深速推理包括(1)一种多GPU推理解决方案,可最大程度地减少潜伏度,同时最大化密集和稀疏变压器模型的吞吐量,当它们适合聚集的GPU内存时,以及(2)一种异质推理解决方案,该解决方案利用CPU和NVME内存中的CPU和NVME内存。除了GPU内存和计算以使高推理吞吐量具有不适合聚集GPU内存的大型推理吞吐量。对于面向延迟的方案,深速推理可将延迟降低到最新的7倍,而对于面向吞吐量的方案,延迟的潜伏期将延迟减少到1.5倍以上。此外,它通过利用数百个GPU来实现实时延迟约束下的参数量表推断,这是一个前所未有的推理。它可以比仅使用GPU的解决方案更大的25倍模型,同时提供84个TFLOPS(超过50美元的A6000峰值)。
translated by 谷歌翻译
ALPA通过生成统一数据,操作员和管道并行性的执行计划来自动对大型深度学习(DL)模型的模型平行训练。现有的模型并行训练系统要求用户手动创建并行化计划,或者自动从有限的模型并行性配置中生成一个计划。它们不足以在分布式计算设备上扩展复杂的DL模型。 ALPA通过将并行性视为两个层次级别来分配大型DL模型的训练:操作员和操作员并行性。基于它,ALPA构建了一个新的分层空间,用于大规模的模型并行执行计划。 ALPA设计了许多汇编,以在每个并行性级别自动得出有效的并行执行计划。 ALPA实现了有效的运行时,以在分布式计算设备上协调两级并行执行。我们的评估表明,ALPA生成的并行化计划,即使在其设计的型号上,也可以匹配或超过手动模型并联训练系统。与专业系统不同,ALPA还推广到具有异质体系结构和模型的模型,而没有手动设计的计划。 ALPA的源代码可在https://github.com/alpa-projects/alpa上公开获得
translated by 谷歌翻译
分布式培训已成为培训大型神经网络(NN)模型的普遍性和有效的方法,该模型加工大规模数据。然而,满足来自各种NN模型,多样化计算资源的要求以及在培训工作期间的动态变化是非常挑战的。在这项研究中,我们在系统的端到端视图中设计了我们的分布式训练框架,以提供不同场景的内置自适应能力,特别是对于工业应用和生产环境,通过完全考虑资源分配,模型分区,任务放置和分布式执行。基于统一的分布式图和统一群集对象,我们的自适应框架配备了全球成本模型和全局计划者,可以实现任意并行,资源感知的放置,多模式执行,容错和弹性分布式。训练。实验表明,我们的框架可以满足应用程序的多样性和资源的异质性满足各种要求和具有竞争力的性能。具有260亿参数的Ernie语言模型在数千个AI处理器上有效地培训,可扩展性较弱的91.7%。通过采用异质管道异步执行,从推荐系统的模型的吞吐量可以分别增加到2.1倍,仅增加了GPU和CPU培训的3.3倍。此外,容错和弹性分布式培训已成功应用于在线工业应用,这减少了长期培训工作的数量,增加了34.49%,并在全球调度效率增加了33.91%生产环境。
translated by 谷歌翻译
模型大小的范围不断增加,并且持续改进性能使大型模型时代的到来的到来。在本报告中,我们通过潜入培训目标和培训方法来探讨大型模型培训如何运作。具体而言,培训目标描述了如何利用Web规模数据来开发基于自我监督的学习以及基于分布式培训的培训方法,开发出极强的大型模型,描述了如何使大型模型培训成为现实。我们将现有的培训方法总结为三个主要类别:训练并行性,节省记忆技术和模型稀疏设计。训练并行性可以根据发生的并行性维度分类为数据,管道和张量并行性。节省记忆的技术是正交的,并且与训练并行性互补。和模型稀疏设计以恒定的计算成本进一步扩大模型大小。在https://github.com/qhliu26/bm-training提供了不断更新的大型模型培训清单。
translated by 谷歌翻译
Modern Deep Learning (DL) models have grown to sizes requiring massive clusters of specialized, high-end nodes to train. Designing such clusters to maximize both performance and utilization to amortize their steep cost is a challenging task requiring careful balance of compute, memory, and network resources. Moreover, a plethora of each model's tuning knobs drastically affect the performance, with optimal values often depending on the underlying cluster's characteristics, which necessitates a complex cluster-workload co-design process. To facilitate the design space exploration of such massive DL training clusters, we introduce COMET a holistic cluster design methodology and workflow to jointly study the impact of parallelization strategies and key cluster resource provisioning on the performance of distributed DL training. We develop a step-by-step process to establish a reusable and flexible methodology, and demonstrate its application with a case study of training a Transformer-1T model on a cluster of variable compute, memory, and network resources. Our case study demonstrates COMET's utility in identifying promising architectural optimization directions and guiding system designers in configuring key model and cluster parameters.
translated by 谷歌翻译
深度学习推荐模型(DLRMS)已广泛应用于互联网公司。DLRM的嵌入表太大,无法完全适合GPU内存。我们通过利用目标数据集的ID频率统计信息来动态管理CPU和GPU内存空间中的嵌入式表的基于GPU的软件缓存方法。我们提出的软件缓存以同步更新方式有效地在GPU上培训整个DLRM。它还与广泛使用的混合平行训练方法相结合,将其缩放到多个GPU。评估我们的原型系统表明,我们只能保留GPU中嵌入参数的1.5%,以获得体面的端到端训练速度。
translated by 谷歌翻译
培训尺寸培训大型深度学习模型非常具有挑战性。本文提出了一种新型管道并行方案,该方案结合了双向管道,以有效地训练大规模模型。嵌合体是一种同步方法,因此不会损失精度,比异步方法更加融合。与最新的同步管道方法相比,嵌合体将气泡的数量降低至50%;受益于双向管道的复杂调度,嵌合体具有更平衡的激活记忆消耗。评估是在基于变压器的语言模型上进行的。对于在PIZ Daint超级计算机的2,048个GPU节点上运行的GPT-2模型,Chimera通过最先进的同步和异步管道方法将培训吞吐量提高了1.16x-2.34x。
translated by 谷歌翻译
基于变压器的神经模型在许多AI应用中使用。培训这些模型很昂贵,因为它需要大量的GPU资源和较长的持续时间。这是具有挑战性的,因为诸如句子之类的典型数据具有可变的长度,而变压器的计算模式比卷积神经网络更为复杂。现有系统要么仅专注于模型推理,要么仅针对BERT样编码器模型进行优化。在本文中,我们提出了LightSeq2,该系统是为GPU上的一般变压器模型加速培训的系统。我们提出了一系列针对变压器模型的特定计算流量和内存访问模式量身定制的GPU优化技术。 LightSeq2支持许多模型体系结构,包括BERT(仅编码),GPT(仅解码器),变压器(编码器编码器)和视觉变压器。我们对各种模型和基准测试的实验表明,LightSeq2始终比不同GPU上的先前系统更快(1.4-3.5倍)。特别是,与大型公共机器翻译基准(WMT14英语 - 德国人)上的现有系统相比,它获得了308%的培训速度。
translated by 谷歌翻译
We introduce Breadth-First Pipeline Parallelism, a novel training schedule which optimizes the combination of pipeline and data parallelism. Breadth-First Pipeline Parallelism lowers training time, cost and memory usage by combining a high GPU utilization with a small batch size per GPU, and by making use of fully sharded data parallelism. Experimentally, we observed increases of up to 53% in training speed.
translated by 谷歌翻译
大型变压器模型在各种自然语言处理(NLP)任务上显示出令人鼓舞的性能。尽管AI社区已将模型量表扩展到了万亿个参数级别,但由于延迟,吞吐量和内存约束,仍不确定100亿参数模型的实际部署。在本文中,我们提出了Energonai,以解决单个或多GPU系统上有效部署1000亿参数变压器模型的挑战。 Energonai采用层次结构控制器系统体系结构来协调多个设备并有效支持不同的并行模式。它将子模型的执行委托给单个控制器样式的多个工人,并以多控制器样式的工人之间的工人之间的张量并行性和管道并行性。在新的架构上,我们提出了三种技术,即非阻滞管道并行性,分布式冗余计算消除和同行记忆池。 Energonai使用户能够编程复杂的并行代码与串行编码相同。与FertransFormer相比,我们已经证明,Energonai在延迟和吞吐量方面具有较高的性能。在我们的实验中,Energonai可以在张量并行性,管道并行性的10%可伸缩性中实现37%的潜伏期降低,并通过使用较大的异质记忆空间以有限的性能降低的成本来提高对单个GPU推断的模型量表。
translated by 谷歌翻译
图形神经网络(GNN)的输入图的大小不断增加,突显了使用多GPU平台的需求。但是,由于计算不平衡和效率较低的通信,现有的多GPU GNN解决方案遭受了劣质性能。为此,我们提出了MGG,这是一种新型的系统设计,可以通过以GPU为中心的软件管道在多GPU平台上加速GNN。 MGG探讨了通过细粒度计算通信管道中隐藏GNN工作负载中远程内存访问延迟的潜力。具体而言,MGG引入了管​​道感知工作负载管理策略和混合数据布局设计,以促进通信局限性重叠。 MGG实现以优化的管道为中心的内核。它包括工作负载交织和基于经经的映射,以进行有效的GPU内核操作管道和专门的内存设计以及优化,以更好地数据访问性能。此外,MGG还结合了轻巧的分析建模和优化启发式方法,以动态提高运行时不同设置的GNN执行性能。全面的实验表明,MGG在各种GNN设置上的最先进的多GPU系统要比最先进的多GPU系统:平均比具有统一虚拟内存设计的多GPU系统快3.65倍,平均比DGCL框架快7.38倍。
translated by 谷歌翻译
随着巨型密集模型的训练在当今硬件资源的可用性和能力方面达到了界限,由于其质量降低了大量培训成本,因此Experts(MOE)模型成为最有前途的模型体系结构之一等效密集模型。它的培训成本节省从编码器模型(先前的工作)展示到自动攻击性语言模型的5倍(这项工作以及并行探索)。但是,由于模型的规模和独特的架构,如何提供快速MOE模型推理仍然具有挑战性和未解决,从而限制了其实际用途。为了解决这个问题,我们提出了DeepSpeed-Moe,这是DeepSpeed库的一部分,包括新型MOE架构设计和模型压缩技术,将MOE模型大小降低到3.7倍,以及一个,以及一个与现有的MOE推理解决方案相比,高度优化的推理系统可提供7.3倍的延迟和成本。 DeepSpeed-Moe提供了前所未有的量表和效率,可与质量等效的密集模型相比,提供高达4.5倍和9倍的推理的大型MOE模型。我们希望我们的创新和系统有助于在大型模型景观中打开通往新方向的有前途的途径,从密集到稀疏的MOE模型转变,在这种模型中,培训和部署具有更少资源的更高质量模型变得更加广泛。
translated by 谷歌翻译
近年来,Experts(MOE)的混合物已成为一种有前途的深度学习技术,可以将模型能力扩展为万亿多个参数,同时通过稀疏计算降低计算成本。虽然MoE开设了一个非常大的模型的新领域,但由于MOE的动态性质与系统的静态平行性/管道层之间的不匹配,因此其数以千计的GPU的实现受到限制。我们提出了Tutel,这是一种具有动态自适应并行性和管道的高度可扩展的堆栈设计和实现。 TUTEL在运行时提供自适应并行性切换和自适应管道,分别达到1.74倍和2.00倍的单MOE层加速度。我们还提出了一种用于MOE通信速度的新颖的二维层次结构算法,该算法的表现超过了2,048 GPU的先前最先前的最新时间。 Tutel汇总了所有技术,最终在16 GPU和2,048 GPU上分别提供了4.96倍和5.75倍的加速度,分别通过Fairseq:Meta的Facebook AI AI研究序列到序列工具Kit(Tutel(Tutel)(Tutel)(Tutel)(现在由Fairseq部分采用)。 Tutel源代码可在公共场所获得:https://github.com/microsoft/tutel。我们的评估表明,Tutel有效,有效地运行了一个基于现实的MOE模型,名为Swinv2-Moe,建立在Swin Transformer V2上,这是一种最先进的计算机视觉体系结构。在效率方面,Tutel加速了Swinv2-MoE,在FairSeq的训练和推理中分别达到1.55倍和2.11倍的速度。关于有效性,SWINV2-MOE模型在预训练和下游计算机视觉任务(例如可可对象检测)方面都比对应的密度密度模型都达到了卓越的精度,这表明Tutel准备对端到端现实世界模型训练的准备就绪和推理。 Swinv2-Moe在https://github.com/microsoft/swin-transformer中开放。
translated by 谷歌翻译
变形金刚是一种深入学习语言模型,用于数据中心中的自然语言处理(NLP)服务。在变压器模型中,生成的预训练的变压器(GPT)在文本生成或自然语言生成(NLG)中取得了显着的性能,它需要在摘要阶段处理大型输入上下文,然后是产生一个生成阶段的一次单词。常规平台(例如GPU)专门用于在摘要阶段平行处理大型输入,但是由于其顺序特征,它们的性能在生成阶段显着降低。因此,需要一个有效的硬件平台来解决由文本生成的顺序特征引起的高潜伏期。在本文中,我们提出了DFX,这是一种多FPGA加速器,该设备在摘要和发电阶段中执行GPT-2模型端到端,并具有低延迟和高吞吐量。 DFX使用模型并行性和优化的数据流,这是模型和硬件感知的设备之间快速同时执行执行。其计算核心根据自定义说明运行,并提供GPT-2操作端到端。我们在四个Xilinx Alveo U280 FPGAS上实现了建议的硬件体系结构,并利用了高带宽内存(HBM)的所有频道,以及用于高硬件效率的最大计算资源数量。 DFX在现代GPT-2模型上实现了四个NVIDIA V100 GPU的5.58倍加速度和3.99倍的能效。 DFX的成本效益比GPU设备更具成本效益,这表明它是云数据中心中文本生成工作负载的有前途解决方案。
translated by 谷歌翻译