互联网流量分类在网络可见性,服务质量(QoS),入侵检测,经验质量(QOE)和交通趋势分析中起关键作用。为了提高隐私,完整性,机密性和协议混淆,当前的流量基于加密协议,例如SSL/TLS。随着文献中机器学习(ML)和深度学习(DL)模型的使用增加,由于缺乏标准化的框架,不同模型和方法之间的比较变得繁琐且困难。在本文中,我们提出了一个名为OSF-EIMTC的开源框架,该框架可以提供学习过程的完整管道。从著名的数据集到提取新的和知名的功能,它提供了著名的ML和DL模型(来自交通分类文献)的实现以及评估。这样的框架可以促进交通分类域的研究,从而使其更可重复,可重复,更易于执行,并可以更准确地比较知名和新颖的功能和新颖的功能和模型。作为框架评估的一部分,我们演示了可以使用多个数据集,模型和功能集的各种情况。我们展示了公开可用数据集的分析,并邀请社区使用OSF-EIMTC参与我们的公开挑战。
translated by 谷歌翻译
互联网流量分类广泛用于促进网络管理。它在服务质量(QoS),经验质量(QOE),网络可见性,入侵检测和交通趋势分析中起着至关重要的作用。尽管没有理论上的保证,即基于深度学习的解决方案比经典的机器学习(ML)的解决方案更好,但基于DL的模型已成为常见默认值。本文比较了著名的基于DL和基于ML的模型,并表明,在恶意交通分类的情况下,最先进的基于DL的解决方案不一定优于基于经典的ML的解决方案。我们使用两个知名数据集来体现这一发现,用于各种任务,例如:恶意软件检测,恶意软件家庭分类,零日攻击的检测以及对迭代增长数据集的分类。请注意,评估所有可能的模型以做出具体陈述是不可行的,因此,上述发现不是避免基于DL的模型的建议,而是经验证明,在某些情况下,有更简单的解决方案,即更简单的解决方案,即可能表现更好。
translated by 谷歌翻译
The recent success and proliferation of machine learning and deep learning have provided powerful tools, which are also utilized for encrypted traffic analysis, classification, and threat detection in computer networks. These methods, neural networks in particular, are often complex and require a huge corpus of training data. Therefore, this paper focuses on collecting a large up-to-date dataset with almost 200 fine-grained service labels and 140 million network flows extended with packet-level metadata. The number of flows is three orders of magnitude higher than in other existing public labeled datasets of encrypted traffic. The number of service labels, which is important to make the problem hard and realistic, is four times higher than in the public dataset with the most class labels. The published dataset is intended as a benchmark for identifying services in encrypted traffic. Service identification can be further extended with the task of "rejecting" unknown services, i.e., the traffic not seen during the training phase. Neural networks offer superior performance for tackling this more challenging problem. To showcase the dataset's usefulness, we implemented a neural network with a multi-modal architecture, which is the state-of-the-art approach, and achieved 97.04% classification accuracy and detected 91.94% of unknown services with 5% false positive rate.
translated by 谷歌翻译
Network traffic classification is the basis of many network security applications and has attracted enough attention in the field of cyberspace security. Existing network traffic classification based on convolutional neural networks (CNNs) often emphasizes local patterns of traffic data while ignoring global information associations. In this paper, we propose a MLP-Mixer based multi-view multi-label neural network for network traffic classification. Compared with the existing CNN-based methods, our method adopts the MLP-Mixer structure, which is more in line with the structure of the packet than the conventional convolution operation. In our method, the packet is divided into the packet header and the packet body, together with the flow features of the packet as input from different views. We utilize a multi-label setting to learn different scenarios simultaneously to improve the classification performance by exploiting the correlations between different scenarios. Taking advantage of the above characteristics, we propose an end-to-end network traffic classification method. We conduct experiments on three public datasets, and the experimental results show that our method can achieve superior performance.
translated by 谷歌翻译
检测零日(新颖)攻击的能力在网络安全行业中变得至关重要。由于不断发展的攻击签名,现有的网络入侵检测系统通常无法检测到这些威胁。该项目旨在通过利用进入私人网络之前捕获的网络流量来解决检测零日DDO(分布式拒绝服务)攻击的任务。现代特征提取技术与神经网络结合使用,以确定网络数据包是良性还是恶意。
translated by 谷歌翻译
社交媒体,职业运动和视频游戏正在推动实时视频流的快速增长,在抽搐和YouTube Live等平台上。自动流媒体经验非常易于短时间级网络拥塞,因为客户端播放缓冲区通常不超过几秒钟。不幸的是,识别这些流和测量他们的QoE进行网络管理是具有挑战性的,因为内容提供商在很大程度上使用相同的交付基础设施来用于实时和视频点播(VOD)流,并且不能提供数据包检查技术(包括SNI / DNS查询监控)始终区分两者。在本文中,我们设计,构建和部署康复:基于网络级行为特征的实时视频检测和QoE测量的机器学习方法。我们的贡献是四倍:(1)我们从抽搐和YouTube分析约23,000个视频流,并在其流量配置文件中识别区分实时和按需流的关键功能。我们将我们的交通迹线释放为公众的开放数据; (2)我们开发基于LSTM的二进制分类器模型,该模型将Live从按需流实时区分,在提供商的高度超过95%的准确度; (3)我们开发了一种方法,估计实时流动流动的QoE度量,分辨率和缓冲率分别分别为93%和90%的总体精度; (4)最后,我们将我们的解决方案原型,将其培训在实验室中,并在服务于7,000多名订阅者的Live ISP网络中部署它。我们的方法提供了ISP,具有细粒度的可视性,进入实时视频流,使它们能够测量和改善用户体验。
translated by 谷歌翻译
这项工作提供了可靠的nids(R-nids),一种新的机器学习方法(ML)的网络入侵检测系统(NIDS),允许ML模型在集成数据集上工作,从不同数据集中具有不同信息的学习过程。因此,R-NIDS针对更强大的模型的设计,比传统方法更好地概括。我们还提出了一个名为UNK21的新数据集。它是由三个最着名的网络数据集(UGR'16,USNW-NB15和NLS-KDD)构建,每个网络环境收集,使用不同的特征和类,通过使用数据聚合方法R-nids。在r-nids之后,在这项工作中,我们建议基于文献中的三个最常见的数据集的信息来构建两个着名的ML模型(一个线性和非线性的一个),用于NIDS评估中的三个,集成在UNK21中的那些。所提出的方法优惠展示了作为NIDS解决方案训练的两种ML模型的结果可以从这种方法中受益,在新提议的UNK21数据集上培训时能够更好地概括。此外,这些结果用统计工具仔细分析了对我们的结论提供了高度信心的统计工具。
translated by 谷歌翻译
设备识别是保护IoT设备网络的一种方法,该设备随后可以从网络中隔离被识别为可疑的设备。在这项研究中,我们提出了一种基于机器学习的方法IotDevid,该方法通过其网络数据包的特征来识别设备。通过使用严格的功能分析和选择过程,我们的研究为建模设备行为提供了可推广和现实的方法,从而在两个公共数据集中实现了高预测精度。该模型的基础功能集显示出比用于设备识别的现有功能集更具预测性,并且显示出在功能选择过程中概括为看不见的数据。与大多数现有的物联网设备识别方法不同,IotDevid能够使用非IP和低能协议来检测设备。
translated by 谷歌翻译
随着深度神经网络(DNNS)的进步在许多关键应用中表现出前所未有的性能水平,它们的攻击脆弱性仍然是一个悬而未决的问题。我们考虑在测试时间进行逃避攻击,以防止在受约束的环境中进行深入学习,其中需要满足特征之间的依赖性。这些情况可能自然出现在表格数据中,也可能是特定应用程序域中功能工程的结果,例如网络安全中的威胁检测。我们提出了一个普通的基于迭代梯度的框架,称为围栏,用于制定逃避攻击,考虑到约束域和应用要求的细节。我们将其应用于针对两个网络安全应用培训的前馈神经网络:网络流量僵尸网络分类和恶意域分类,以生成可行的对抗性示例。我们广泛评估了攻击的成功率和绩效,比较它们对几个基线的改进,并分析影响攻击成功率的因素,包括优化目标和数据失衡。我们表明,通过最少的努力(例如,生成12个其他网络连接),攻击者可以将模型的预测从恶意类更改为良性并逃避分类器。我们表明,在具有更高失衡的数据集上训练的模型更容易受到我们的围栏攻击。最后,我们证明了在受限领域进行对抗训练的潜力,以提高针对这些逃避攻击的模型弹性。
translated by 谷歌翻译
随着计算系统的不断增长的加工能力和大规模数据集的可用性的增加,机器学习算法导致了许多不同区域的重大突破。此开发影响了计算机安全性,在基于学习的安全系统中产生了一系列工作,例如用于恶意软件检测,漏洞发现和二进制代码分析。尽管潜力巨大,但安全性的机器学习易于细微缺陷,以破坏其性能,并使基于学习的系统可能不适合安全任务和实际部署。在本文中,我们用临界眼睛看这个问题。首先,我们确定基于学习的安全系统的设计,实现和评估中的常见缺陷。我们在过去的10年内,从顶层安全会议中进行了一项研究,确认这些陷阱在目前的安全文献中普遍存在。在一个实证分析中,我们进一步展示了个体陷阱如何导致不切实际的表现和解释,阻碍了对手的安全问题的理解。作为补救措施,我们提出了可行的建议,以支持研究人员在可能的情况下避免或减轻陷阱。此外,我们在将机器学习应用于安全性并提供进一步研究方向时确定打开问题。
translated by 谷歌翻译
恶意应用程序(尤其是针对Android平台的应用程序)对开发人员和最终用户构成了严重威胁。许多研究工作都致力于开发有效的方法来防御Android恶意软件。但是,鉴于Android恶意软件的爆炸性增长以及恶意逃避技术(如混淆和反思)的持续发展,基于手动规则或传统机器学习的Android恶意软件防御方法可能无效。近年来,具有强大功能抽象能力的主要研究领域称为“深度学习”(DL),在各个领域表现出了令人信服和有希望的表现,例如自然语言处理和计算机视觉。为此,采用深度学习技术来阻止Android恶意软件攻击,最近引起了广泛的研究关注。然而,没有系统的文献综述着重于针对Android恶意软件防御的深度学习方法。在本文中,我们进行了系统的文献综述,以搜索和分析在Android环境中恶意软件防御的背景下采用了如何应用的。结果,确定了涵盖2014 - 2021年期间的132项研究。我们的调查表明,尽管大多数这些来源主要考虑基于Android恶意软件检测的基于DL,但基于其他方案的53项主要研究(40.1%)设计防御方法。这篇综述还讨论了基于DL的Android恶意软件防御措施中的研究趋势,研究重点,挑战和未来的研究方向。
translated by 谷歌翻译
本文介绍了基于图形神经网络(GNN)的新的网络入侵检测系统(NID)。 GNN是深度神经网络的一个相对较新的子领域,可以利用基于图形数据的固有结构。 NIDS的培训和评估数据通常表示为流记录,其可以自然地以图形格式表示。这建立了探索网络入侵检测GNN的潜在和动力,这是本文的重点。基于机器的基于机器的NIDS的目前的研究只考虑网络流动,而不是考虑其互连的模式。这是检测复杂的物联网网络攻击的关键限制,例如IOT设备推出的DDOS和分布式端口扫描攻击。在本文中,我们提出了一种克服了这种限制的GNN方法,并允许捕获图形的边缘特征以及IOT网络中网络异常检测的拓扑信息。据我们所知,我们的方法是第一次成功,实用,广泛地评估应用图形神经网络对使用流基于流的数据的网络入侵检测问题的方法。我们在最近的四个NIDS基准数据集上进行了广泛的实验评估,表明我们的方法在关键分类指标方面占据了最先进的,这证明了网络入侵检测中GNN的潜力,并提供了进一步研究的动机。
translated by 谷歌翻译
在本文中,我们介绍了四种突出的恶意软件检测工具的科学评估,以帮助组织提出两个主要问题:基于ML的工具在多大程度上对以前和从未见过的文件进行了准确的分类?是否值得购买网络级恶意软件检测器?为了识别弱点,我们针对各种文件类型的总计3,536个文件(2,554或72 \%恶意,982或28 \%良性)测试了每个工具,包括数百个恶意零日,polyglots和apt-style-style style文件,在多个协议上交付。我们介绍了有关检测时间和准确性的统计结果,请考虑互补分析(一起使用多个工具),并提供了近期成本效益评估程序的两种新颖应用。尽管基于ML的工具在检测零日文件和可执行文件方面更有效,但基于签名的工具仍然是总体上更好的选择。两种基于网络的工具都与任何一种主机工具配对时都可以进行大量(模拟)节省,但两者在HTTP或SMTP以外的协议上都显示出较差的检测率。我们的结果表明,所有四个工具都具有几乎完美的精度但令人震惊的召回率,尤其是在可执行文件和Office文件以外的文件类型上 - 未检测到37%的恶意软件,包括所有Polyglot文件。给出了研究人员的优先事项,并给出了最终用户的外卖。
translated by 谷歌翻译
Darknets的匿名性质通常用于非法活动。先前的研究已经采用了机器学习和深度学习技术来自动对暗网流量的检测,以阻止这些犯罪活动。这项研究旨在通过评估支持向量机(SVM),随机森林(RF),卷积神经网络(CNN)和辅助分类器生成对抗网络(AC-GAN)来改善暗网流量检测申请类型。我们发现,我们的RF模型优于与CIC-Darknet2020数据集的先前工作中使用的最新机器学习技术。为了评估RF分类器的鲁棒性,我们混淆选择应用程序类型类,以模拟现实的对抗攻击方案。我们证明,我们表现最好的分类器可能会被这种攻击击败,我们考虑处理这种对抗性攻击的方法。
translated by 谷歌翻译
复杂的流量分析,例如加密的流量分析和未知的恶意软件检测,强调需要进行高级方法来分析网络流量。使用固定模式,签名匹配和检测网络流量中已知模式的规则的传统方法已被AI(人工智能)驱动算法取代。但是,缺乏高性能AI网络特定的框架使得不可能在网络工作负载中部署基于AI的实时处理。在本文中,我们描述了流量分析开发工具包(TADK)的设计,这是一个针对基于AI的网络工作负载处理的行业标准框架。 TADK可以在数据中心到边缘的网络设备中基于实时的AI网络工作负载处理,而无需专门硬件(例如GPU,神经处理单元等)。我们已经在商品WAF和5G UPF中部署了TADK,评估结果表明,Tadk可以在流量功能提取时达到每个核心最多35.3Gbps的吞吐量,每核6.5Gbps在流量分类中,并且可以减少SQLI/XSS检测到下降至4.5us每个请求的精度比固定模式解决方案更高。
translated by 谷歌翻译
数字取证是在数字设备中提取,保存和记录证据的过程。数字取证中的一种常用方法是从数字设备的主要内存中提取数据。但是,主要的挑战是确定要提取的重要数据。几个关键信息都存在于主内存中,例如用户名,密码和加密密钥,例如SSH会话键。在本文中,我们提出了SmartKex,SmartKex是一种机器学习辅助方法,以从OpenSSH进程的Heap Memory快照中提取会话键。此外,我们发布了一个公开可用的数据集和用于创建其他数据的相应工具链。最后,我们将SmartKex与幼稚的蛮力方法进行比较,并从经验上表明,SmartKex可以以高精度和高吞吐量提取会话键。有了提供的资源,我们打算加强有关数字取证,网络安全和机器学习之间交集的研究。
translated by 谷歌翻译
网络威胁情报(CTI)共享是减少攻击者和捍卫者之间信息不对称的重要活动。但是,由于数据共享和机密性之间的紧张关系,这项活动带来了挑战,这导致信息保留通常会导致自由骑士问题。因此,共享的信息仅代表冰山一角。当前的文献假设访问包含所有信息的集中数据库,但是由于上述张力,这并不总是可行的。这会导致不平衡或不完整的数据集,需要使用技术扩展它们。我们展示了这些技术如何导致结果和误导性能期望。我们提出了一个新颖的框架,用于从分布式数据中提取有关事件,漏洞和妥协指标的分布式数据,并与恶意软件信息共享平台(MISP)一起证明其在几种实际情况下的使用。提出和讨论了CTI共享的政策影响。拟议的系统依赖于隐私增强技术和联合处理的有效组合。这使组织能够控制其CTI,并最大程度地减少暴露或泄漏的风险,同时为共享的好处,更准确和代表性的结果以及更有效的预测性和预防性防御能力。
translated by 谷歌翻译
机器学习(ML)代表了当前和未来信息系统的关键技术,许多域已经利用了ML的功能。但是,网络安全中ML的部署仍处于早期阶段,揭示了研究和实践之间的显着差异。这种差异在当前的最新目的中具有其根本原因,该原因不允许识别ML在网络安全中的作用。除非广泛的受众理解其利弊,否则ML的全部潜力将永远不会释放。本文是对ML在整个网络安全领域中的作用的首次尝试 - 对任何对此主题感兴趣的潜在读者。我们强调了ML在人类驱动的检测方法方面的优势,以及ML在网络安全方面可以解决的其他任务。此外,我们阐明了影响网络安全部署实际ML部署的各种固有问题。最后,我们介绍了各种利益相关者如何为网络安全中ML的未来发展做出贡献,这对于该领域的进一步进步至关重要。我们的贡献补充了两项实际案例研究,这些案例研究描述了ML作为对网络威胁的辩护的工业应用。
translated by 谷歌翻译
网络犯罪是本世纪的主要数字威胁之一。尤其是,勒索软件攻击已大大增加,导致全球损失成本数十亿美元。在本文中,我们训练和测试不同的机器学习和深度学习模型,以进行恶意软件检测,恶意软件分类和勒索软件检测。我们介绍了一种新颖而灵活的勒索软件检测模型,该模型结合了两个优化的模型。我们在有限数据集上的检测结果表明了良好的准确性和F1分数。
translated by 谷歌翻译
Network intrusion detection systems (NIDSs) play an important role in computer network security. There are several detection mechanisms where anomaly-based automated detection outperforms others significantly. Amid the sophistication and growing number of attacks, dealing with large amounts of data is a recognized issue in the development of anomaly-based NIDS. However, do current models meet the needs of today's networks in terms of required accuracy and dependability? In this research, we propose a new hybrid model that combines machine learning and deep learning to increase detection rates while securing dependability. Our proposed method ensures efficient pre-processing by combining SMOTE for data balancing and XGBoost for feature selection. We compared our developed method to various machine learning and deep learning algorithms to find a more efficient algorithm to implement in the pipeline. Furthermore, we chose the most effective model for network intrusion based on a set of benchmarked performance analysis criteria. Our method produces excellent results when tested on two datasets, KDDCUP'99 and CIC-MalMem-2022, with an accuracy of 99.99% and 100% for KDDCUP'99 and CIC-MalMem-2022, respectively, and no overfitting or Type-1 and Type-2 issues.
translated by 谷歌翻译