最近的研究通过将基于Trimap的图像垫子的成功扩展到视频域,在视频垫子上取得了长足进展。在本文中,我们将此任务推向了更实用的设置,并提出了仅使用一个用户宣传的Trimap来强制执行视频底表的单个TRIMAP视频效果网络(OTVM)。 OTVM的一个关键是Trimap传播和α预测的关节建模。从基线构架传播和α预测网络开始,我们的OTVM将两个网络与alpha-Trimap修补模块结合在一起,以促进信息流。我们还提出了一种端到端培训策略,以充分利用联合模型。与先前的解耦方法相比,我们的联合建模极大地提高了三张式传播的时间稳定性。我们在两个最新的视频底变基准测试中评估了我们的模型,深度视频垫子和视频图108,以及优于大量利润率的最先进(MSE改善分别为56.4%和56.7%)。源代码和模型可在线获得:https://github.com/hongje/otvm。
translated by 谷歌翻译
We propose a novel solution for semi-supervised video object segmentation. By the nature of the problem, available cues (e.g. video frame(s) with object masks) become richer with the intermediate predictions. However, the existing methods are unable to fully exploit this rich source of information. We resolve the issue by leveraging memory networks and learn to read relevant information from all available sources. In our framework, the past frames with object masks form an external memory, and the current frame as the query is segmented using the mask information in the memory. Specifically, the query and the memory are densely matched in the feature space, covering all the space-time pixel locations in a feed-forward fashion. Contrast to the previous approaches, the abundant use of the guidance information allows us to better handle the challenges such as appearance changes and occlussions. We validate our method on the latest benchmark sets and achieved the state-of-the-art performance (overall score of 79.4 on Youtube-VOS val set,
translated by 谷歌翻译
最近,基于内存的方法显示了半监督视频对象分割的有希望的结果。这些方法可以通过对先前掩码的经常更新的内存来预测对象蒙版逐帧。与这种人均推断不同,我们通过将视频对象分割视为夹子掩盖传播来研究替代角度。在此每次CLIP推断方案中,我们使用一个间隔更新内存,并同时处理内存更新之间的一组连续帧(即剪辑)。该方案提供了两个潜在的好处:通过剪辑级优化和效率增益的准确性增益,通过平行计算多个帧。为此,我们提出了一种针对人均推理量身定制的新方法。具体而言,我们首先引入夹具操作,以根据CLIP相关性来完善特征。此外,我们采用了一种渐进匹配机制来在剪辑中有效地通过信息通行。通过两个模块的协同作用和新提议的每盘培训,我们的网络在YouTube-Vos 2018/2019 Val(84.6%和84.6%)和Davis 2016/2017 Val(91.9 Val(91.9 %和86.1%)。此外,我们的模型在不同的内存更新间隔内显示出巨大的速度准确性权衡取舍,从而带来了巨大的灵活性。
translated by 谷歌翻译
人类垫子是指从具有高质量的自然图像中提取人类部位,包括人类细节信息,例如头发,眼镜,帽子等。这项技术在电影行业的图像合成和视觉效果中起着至关重要的作用。当绿屏不可用时,现有的人类底漆方法需要其他输入(例如Trimap,背景图像等)或具有较高计算成本和复杂网络结构的模型,这给应用程序带来了很大的困难实践中的人类垫子。为了减轻此类问题,大多数现有方法(例如MODNET)使用多分支为通过细分铺平道路,但是这些方法并未充分利用图像功能,并且仅利用网络的预测结果作为指导信息。因此,我们提出了一个模块来生成前景概率图,并将其添加到MODNET中以获得语义引导的Matting Net(SGM-NET)。在只有一个图像的条件下,我们可以实现人类的效果任务。我们在P3M-10K数据集上验证我们的方法。与基准相比,在各种评估指标中,我们的方法显着改善。
translated by 谷歌翻译
半监控视频对象分割(VOS)是指在近年来在第一帧中的注释中分割剩余帧中的目标对象,该帧近年来已经积极研究。关键挑战在于找到利用过去框架的时空上下文的有效方法来帮助学习当前帧的判别目标表示。在本文中,我们提出了一种具有专门设计的交互式变压器的新型暹罗网络,称为SITVOS,以实现从历史到当前帧的有效上下文传播。从技术上讲,我们使用变换器编码器和解码器单独处理过去的帧和当前帧,即,编码器从过去的帧中对目标对象的强大的时空上下文进行编码,而解码器将当前帧的特征嵌入为查询。从编码器输出检索目标。为了进一步增强目标表示,设计了一种特征交互模块(FIM)以促进编码器和解码器之间的信息流。此外,我们使用暹罗架构来提取过去和当前帧的骨干功能,它能够重用并且比现有方法更有效。三个挑战基准测试的实验结果验证了SITVOS在最先进的方法上的优越性。
translated by 谷歌翻译
半监控视频对象分割(VOS)旨在跟踪像素级别的视频初始帧中存在的指定对象。为了充分利用对象的外观信息,像素级别匹配广泛用于VOS。传统的特征匹配以样式方式运行,即,仅考虑从查询帧到参考帧的最佳匹配。查询框中的每个位置是指参考帧中的最佳位置,而不管每个参考帧位置的频率如何。在大多数情况下,这效果很好,并且对快速外观变化是强大的,但是当查询框架包含看起来类似于目标对象的后台分散组时可能会导致严重错误。为了缓解这一问题,我们介绍了一种自由派匹配机制,找到从查询帧到参考帧的最佳匹配,反之亦然。在查找查询帧像素的最佳匹配之前,首先考虑用于参考帧像素的最佳匹配以防止每个参考帧像素被过度参考。由于该机制以严格的方式操作,即,如果才能彼此确定匹配,则连接像素,因此可以有效地消除背景干扰器。此外,我们提出了一个掩模嵌入模块,以改善现有的掩模传播方法。通过使用坐标信息嵌入多个历史掩模,可以有效地捕获目标对象的位置信息。
translated by 谷歌翻译
半监督视频对象分割(VOS)的任务已经大大提升,最先进的性能是通过密集的基于匹配的方法进行的。最近的方法利用时空存储器(STM)网络并学习从所有可用源检索相关信息,其中使用对象掩模的过去帧形成外部存储器,并且使用存储器中的掩码信息分段为查询作为查询的当前帧进行分割。然而,当形成存储器并执行匹配时,这些方法仅在忽略运动信息的同时利用外观信息。在本文中,我们倡导\ emph {motion信息}的返回,并提出了一个用于半监督VOS的运动不确定性感知框架(MUMET)。首先,我们提出了一种隐含的方法来学习相邻帧之间的空间对应,构建相关成本卷。在构建密集的对应期间处理遮挡和纹理区域的挑战性案例,我们将不确定性纳入密集匹配并实现运动不确定性感知特征表示。其次,我们介绍了运动感知的空间注意模块,以有效地融合了语义特征的运动功能。关于具有挑战性的基准的综合实验表明,\ TextBF {\ Textit {使用少量数据并将其与强大的动作信息组合可以带来显着的性能Boost}}。我们只使用Davis17达到$ \ Mathcal {} $培训{76.5 \%} $ \ mathcal {f} $培训,这显着优于低数据协议下的\ texit {sota}方法。 \ textit {代码将被释放。}
translated by 谷歌翻译
用于视频对象分割(VOS)的现有最先进方法(VOS)学习帧之间的低级像素到像素对应关系,以在视频中传播对象掩码。这需要大量的密集注释的视频数据,这是昂贵的注释,并且由于视频内的帧是高度相关的,因此由于视频内的帧具有很大冗余。鉴于此,我们提出了HODOR:一种新的方法,通过有效地利用被帮助的静态图像来理解对象外观和场景上下文来解决VOS的新方法。我们将来自图像帧的对象实例和场景信息编码为强大的高级描述符,然后可以用于重新划分不同帧中的这些对象。因此,与没有视频注释培训的现有方法相比,HODOR在DAVIS和YOUTUBE-VOS基准上实现了最先进的性能。如果没有任何架构修改,HODOR也可以通过利用循环一致性围绕单个注释的视频帧周围的视频上下文学习,而其他方法依赖于密集,则时间上一致的注释。
translated by 谷歌翻译
Temporal action detection (TAD) with end-to-end training often suffers from the pain of huge demand for computing resources due to long video duration. In this work, we propose an efficient temporal action detector (ETAD) that can train directly from video frames with extremely low GPU memory consumption. Our main idea is to minimize and balance the heavy computation among features and gradients in each training iteration. We propose to sequentially forward the snippet frame through the video encoder, and backward only a small necessary portion of gradients to update the encoder. To further alleviate the computational redundancy in training, we propose to dynamically sample only a small subset of proposals during training. Moreover, various sampling strategies and ratios are studied for both the encoder and detector. ETAD achieves state-of-the-art performance on TAD benchmarks with remarkable efficiency. On ActivityNet-1.3, training ETAD in 18 hours can reach 38.25% average mAP with only 1.3 GB memory consumption per video under end-to-end training. Our code will be publicly released.
translated by 谷歌翻译
最近,几种基于空间内存的方法已经验证了将中间框架及其面具作为内存有助于将视频中的目标对象细分目标对象。但是,它们主要集中于当前帧和内存框架之间的更好匹配,而无需明确关注内存质量。因此,较差的分割面罩的框架容易被记住,这导致了分割掩盖误差问题并进一步影响分割性能。此外,随着帧数的增长,内存框架的线性增加还限制了模型处理长视频的能力。为此,我们提出了一个质量感知的动态内存网络(QDMN)来评估每个帧的分割质量,从而使内存库可以选择性地存储准确的分段框架,以防止误差积累问题。然后,我们将细分质量与时间一致性相结合,以动态更新内存库以提高模型的实用性。我们的QDMN没有任何铃铛和哨子,在戴维斯和YouTube-Vos基准测试中都取得了新的最新性能。此外,广泛的实验表明,提议的质量评估模块(QAM)可以作为通用插件应用于基于内存的方法,并显着提高性能。我们的源代码可在https://github.com/workforai/qdmn上找到。
translated by 谷歌翻译
现代视频对象分割(VOS)算法以顺序处理顺序实现了显着高的性能,而目前目前普遍的管道仍然表现出一些显而易见的不足,如累积误差,未知的鲁棒性或缺乏适当的解释工具。在本文中,我们将半监控视频对象分割问题放入循环工作流程中,并通过半监控VOS系统的固有循环属性来找到上面的缺陷。首先,循环机制包含在标准顺序流程中的循环机制可以产生更一致的像素 - 方识的表示。依赖于起始帧中的准确参考掩码,我们表明可以减轻错误传播问题。接下来,自然地将离线循环管道扩展到在线方式的简单梯度校正模块,可以突出显示结果的高频率和详细部分,以进一步提高分割质量,同时保持可行的计算成本。同时,这种校正可以保护网络免受干扰信号产生的严重性能下降。最后,我们基于梯度校正过程开发周期有效的接收领域(周期ERF),以提供新的视角,分析特定于对象的感兴趣区域。我们对Davis16,Davis17和Youtube-Vos有挑战性的基准进行全面的比较和详细分析,表明循环机制有助于提高分割质量,提高VOS系统的稳健性,并进一步提供不同VOS算法的定性比较和解释工作。该项目的代码可以在https://github.com/lyxok1/stm-trings找到
translated by 谷歌翻译
特征相似性匹配将参考框架的信息传输到查询框架,是半监视视频对象分割中的关键组件。如果采用了汇总匹配,则背景干扰器很容易出现并降低性能。徒匹配机制试图通过限制要传输到查询框架的信息的量来防止这种情况,但是有两个局限性:1)由于在测试时转换为两种匹配,因此无法完全利用过滤匹配的匹配; 2)搜索最佳超参数需要测试时间手动调整。为了在确保可靠的信息传输的同时克服这些局限性,我们引入了均衡的匹配机制。为了防止参考框架信息过于引用,通过简单地将SoftMax操作与查询一起应用SoftMax操作,对查询框架的潜在贡献得到了均等。在公共基准数据集上,我们提出的方法与最先进的方法达到了可比的性能。
translated by 谷歌翻译
我们提出XMEM,这是一种由Atkinson-Shiffrin Memory模型启发的统一功能存储器存储的长视频的视频对象分割体系结构。视频对象分割的先前工作通常仅使用一种类型的功能内存。对于超过一分钟的视频,单个功能内存模型紧密地链接了内存消耗和准确性。相比之下,遵循Atkinson-Shiffrin模型,我们开发了一种结构,该体系结构结合了多个独立但深厚的特征记忆存储:快速更新的感觉存储器,高分辨率的工作记忆和紧凑的长期记忆。至关重要的是,我们开发了一种记忆增强算法,该算法通常将主动使用的工作记忆元素合并为长期记忆,从而避免记忆爆炸并最大程度地减少长期预测的性能衰减。结合新的记忆阅读机制,XMEM在与最先进的方法(不适用于长视频上使用)相当的长视频时,XMEM大大超过了长效数据集上的最先进性能数据集。代码可从https://hkchengrex.github.io/xmem获得
translated by 谷歌翻译
利用TRIMAP引导和融合多级功能是具有像素级预测的基于Trimap的垫子的两个重要问题。为了利用Trimap指导,大多数现有方法只需将TRIMAPS和图像连接在一起,以馈送深网络或应用额外的网络以提取更多的TRIMAP指导,这符合效率和效率之间的冲突。对于新兴的基于内容的特征融合,大多数现有的消光方法仅关注本地特征,这些功能缺乏与有趣对象相关的强大语义信息的全局功能的指导。在本文中,我们提出了一种由我们的Trimap引导的非背景多尺度池(TMP)模块和全球本地背景信息融合(GLF)模块组成的Trimap-Goided Feats挖掘和融合网络。考虑到Trimap提供强大的语义指导,我们的TMP模块在Trimap的指导下对有趣的对象进行了有效的特征挖掘,而无需额外参数。此外,我们的GLF模块使用我们的TMP模块开采的有趣物体的全局语义信息,以指导有效的全局本地上下文感知多级功能融合。此外,我们建立了一个共同的有趣的物体消光(CIOM)数据集,以推进高质量的图像消光。在组合物-1K测试集,Alphamatting基准和我们的CIOM测试集上的实验结果表明,我们的方法优于最先进的方法。代码和模型将很快公开发布。
translated by 谷歌翻译
我们引入分层可控的视频生成,在没有任何监督的情况下,将视频的初始帧分解为前景和背景层,用户可以通过简单地操纵前景掩模来控制视频生成过程。关键挑战是无监督的前景背景分离,这是模糊的,并且能够预测用户操作,可以访问未获得原始视频序列。我们通过提出两阶段学习程序来解决这些挑战。在第一阶段,随着丰富的损失和动态前景大小,我们学习如何将帧分离为前景和背景图层,并在这些图层上调节,如何使用VQ-VAE发生器生成下一帧。在第二阶段,我们通过将(参数化)控制从未来框架拟合(参数化)控制来进行该网络来预测对掩码的编辑。我们展示了该学习的有效性和更粒度的控制机制,同时说明了在两个基准数据集上的最先进的性能。我们提供了一个视频摘要以及HTTPS://gabriel-中的视频结果.Github.io/layered_controllable_video_generation
translated by 谷歌翻译
尽管视频实例细分(VIS)已经取得了迅速的进步,但当前的方法难以预测具有准确边界细节的高质量面具。此外,预测的分割经常会随着时间的流逝而波动,表明时间一致性线索被忽略或不充分利用。在本文中,我们着手解决这些问题,目的是实现VIS的高度详细且更具时间稳定的面具预测。我们首先提出了视频蒙版转换方法(VMT)方法,得益于高效的视频变压器结构,能够利用细粒度的高分辨率功能。我们的VMT检测和组在视频段中每个曲目的稀疏易用错误时空区域稀疏,然后使用局部和实例级别的提示对其进行完善。其次,我们确定流行的YouTube-VIS数据集的粗边界注释构成了一个主要限制因素。因此,根据我们的VMT体系结构,我们通过迭代培训和自我纠正设计了一种自动注释细化方法。为了基准VIS的高质量掩码预测,我们介绍了HQ-YTVIS数据集,该数据集由手动重新注销的测试集和我们的自动完善培训数据组成。我们将VMT与HQ-YTVI的最新最新方法以及YouTube-VIS,OVIS和BDD100K MOTS基准进行了比较。实验结果清楚地证明了我们方法通过捕获精确的细节来分割复杂和动态对象的功效和有效性。
translated by 谷歌翻译
最近,变形金刚在空间范围内的学习和推断方面很受欢迎。但是,他们的性能依赖于存储并将注意力应用于视频中每个帧的功能张量。因此,随着视频的长度的增长,它们的空间和时间复杂性会线性增加,这对于长视频而言可能非常昂贵。我们提出了一种新颖的视觉记忆网络架构,用于空间范围的学习和推理问题。我们在内存网络中维护了固定的内存插槽,并提出了基于Gumbel-SoftMax的算法,以学习一种自适应策略以更新此内存。最后,该体系结构在视频对象细分(VOS)和视频预测问题上进行了基准测试。我们证明,我们的内存体系结构可实现最新的结果,在视频预测上优于基于变压器的方法和其他最新方法,同时保持恒定的内存能力与序列长度无关。
translated by 谷歌翻译
基于3DCNN,ConvlSTM或光流的先前方法在视频显着对象检测(VSOD)方面取得了巨大成功。但是,它们仍然遭受高计算成本或产生的显着图质量较差的困扰。为了解决这些问题,我们设计了一个基于时空存储器(STM)网络,该网络从相邻帧中提取当前帧的有用时间信息作为VSOD的时间分支。此外,以前的方法仅考虑无时间关联的单帧预测。结果,模型可能无法充分关注时间信息。因此,我们最初将框架间的对象运动预测引入VSOD。我们的模型遵循标准编码器 - 编码器体系结构。在编码阶段,我们通过使用电流及其相邻帧的高级功能来生成高级的时间特征。这种方法比基于光流的方法更有效。在解码阶段,我们提出了一种有效的空间和时间分支融合策略。高级特征的语义信息用于融合低级特征中的对象细节,然后逐步获得时空特征以重建显着性图。此外,受图像显着对象检测(ISOD)中常用的边界监督的启发,我们设计了一种运动感知损失,用于预测对象边界运动,并同时对VSOD和对象运动预测执行多任务学习,这可以进一步促进模型以提取提取的模型时空特征准确并保持对象完整性。在几个数据集上进行的广泛实验证明了我们方法的有效性,并且可以在某些数据集上实现最新指标。所提出的模型不需要光流或其他预处理,并且在推理过程中可以达到近100 fps的速度。
translated by 谷歌翻译
在蓬勃发展的视频时代,视频细分吸引了多媒体社区的越来越多的研究关注。半监督视频对象细分(VOS)旨在分割视频的所有目标框架中的对象,并给定带注释的参考帧掩码。大多数现有方法构建像素参考目标相关性,然后执行像素跟踪以获得目标掩码。由于忽略对象级别的提示,像素级方法使跟踪容易受到扰动的影响,甚至在相似对象之间进行了不加区分。朝向强大的VOS,关键见解是校准每个特定对象的表示和掩盖,以表达和歧视。因此,我们提出了一个新的深层网络,该网络可以自适应地构建对象表示并校准对象掩盖以实现更强的鲁棒性。首先,我们通过应用自适应对象代理(AOP)聚合方法来构建对象表示,其中代理代表在多级别上的任意形状段以供参考。然后,原型掩码最初是从基于AOP的参考目标相关性生成的。之后,通过网络调制进一步校准此类原始掩码,并根据对象代理表示条件。我们以渐进的方式巩固了此条件掩盖校准过程,其中对象表示和原始遮罩会演变为歧视性迭代。广泛的实验是在标准VOS基准,YouTube-VOS-18/19和Davis-17上进行的。我们的模型在现有已发表的作品中实现了最新的表现,并且还表现出对扰动的卓越鲁棒性。我们的项目回购位于https://github.com/jerryx1110/robust-video-object-ementation
translated by 谷歌翻译
图像颜色协调算法旨在自动匹配在不同条件下捕获的前景图像的颜色分布和背景图像。以前的基于深度学习的模型忽略了两个对于实际应用至关重要的问题,即高分辨率(HR)图像处理和模型的可理解性。在本文中,我们提出了一个新型的深层综合颜色滤波器(DCCF)学习框架,用于高分辨率图像协调。具体而言,DCCF首先将原始输入图像列为其低分辨率(LR)对抗零件,然后以端到端的方式学习四个人类可理解的神经过滤器(即色相,饱和,饱和,价值和细心的渲染过滤器),最终以将这些过滤器应用于原始输入图像以获得统一的结果。从可理解的神经过滤器中受益,我们可以为用户提供一个简单而有效的处理程序,以便用户与Deep Model合作,以便在必要时很少努力获得所需的结果。广泛的实验证明了DCCF学习框架的有效性,并且它在IHARMONY4数据集上的最先进的后处理方法优于图像的全分辨率,分别在MSE和PSNR上实现了7.63%和1.69%的相对改进,从而超过了图像的全分辨率。
translated by 谷歌翻译