乳腺肿瘤分割是帮助我们表征和定位肿瘤区域的关键步骤之一。然而,可变的肿瘤形态,模糊边界和类似的强度分布带来了精确分割乳腺肿瘤的挑战。最近,已经提出了许多U-NET变体,并广泛用于乳腺肿瘤分割。但是,这些体系结构受到了两个局限性:(1)忽略基准网络的特征能力,(2)引入额外的复杂操作增加了理解和再现网络的困难。为了减轻这些挑战,本文提出了一个简单而强大的嵌套U-NET(NU-NET),以精确分割乳腺肿瘤。关键思想是利用具有不同深度和共享权重的U-Nets来实现乳腺肿瘤的鲁棒性表征。 NU-NET主要具有以下优点:(1)提高网络适应性和对具有不同尺度的乳腺肿瘤的鲁棒性,(2)此方法易于复制和执行,以及(3)额外的操作增加网络参数而不会显着增加计算成本。在三个公共乳房超声数据集上采用十二种最先进的分割方法的实验结果表明,NU-NET在乳腺肿瘤上具有更具竞争力的分割性能。此外,在肾脏超声图像的分割中进一步说明了NU-NET的鲁棒性。源代码可在https://github.com/cgpzy/nu-net上公开获得。
translated by 谷歌翻译
Breast cancer is one of the common cancers that endanger the health of women globally. Accurate target lesion segmentation is essential for early clinical intervention and postoperative follow-up. Recently, many convolutional neural networks (CNNs) have been proposed to segment breast tumors from ultrasound images. However, the complex ultrasound pattern and the variable tumor shape and size bring challenges to the accurate segmentation of the breast lesion. Motivated by the selective kernel convolution, we introduce an enhanced selective kernel convolution for breast tumor segmentation, which integrates multiple feature map region representations and adaptively recalibrates the weights of these feature map regions from the channel and spatial dimensions. This region recalibration strategy enables the network to focus more on high-contributing region features and mitigate the perturbation of less useful regions. Finally, the enhanced selective kernel convolution is integrated into U-net with deep supervision constraints to adaptively capture the robust representation of breast tumors. Extensive experiments with twelve state-of-the-art deep learning segmentation methods on three public breast ultrasound datasets demonstrate that our method has a more competitive segmentation performance in breast ultrasound images.
translated by 谷歌翻译
近年来,基于深度卷积神经网络(CNN)的细分方法已为许多医学分析任务做出了最先进的成就。但是,这些方法中的大多数通过优化结构或添加U-NET的新功能模块来改善性能,从而忽略了粗粒和细粒的语义信息的互补和融合。为了解决上述问题,我们提出了一个称为渐进学习网络​​(PL-NET)的医学图像分割框架,其中包括内部渐进式学习(IPL)和外部渐进学习(EPL)。 PL-NET具有以下优点:(1)IPL将特征提取为两个“步骤”,它们可以混合不同尺寸的接收场并捕获从粗粒度到细粒度的语义信息,而无需引入其他参数; (2)EPL将训练过程分为两个“阶段”以优化参数,并在上一阶段中实现粗粒信息的融合,并在后期阶段进行细粒度。我们在不同的医学图像分析任务中评估了我们的方法,结果表明,PL-NET的分割性能优于U-NET及其变体的最新方法。
translated by 谷歌翻译
光学相干断层扫描(OCT)有助于眼科医生评估黄斑水肿,流体的积累以及微观分辨率的病变。视网膜流体的定量对于OCT引导的治疗管理是必需的,这取决于精确的图像分割步骤。由于对视网膜流体的手动分析是一项耗时,主观和容易出错的任务,因此对快速和健壮的自动解决方案的需求增加了。在这项研究中,提出了一种名为Retifluidnet的新型卷积神经结构,用于多级视网膜流体分割。该模型受益于层次表示使用新的自适应双重注意(SDA)模块的纹理,上下文和边缘特征的学习,多个基于自适应的Skip Connections(SASC)以及一种新颖的多尺度深度自我监督学习(DSL)方案。拟议的SDA模块中的注意机制使该模型能够自动提取不同级别的变形感知表示,并且引入的SASC路径进一步考虑了空间通道相互依存,以串联编码器和解码器单元,从而提高了表示能力。还使用包含加权版本的骰子重叠和基于边缘的连接损失的联合损失函数进行了优化的retifluidnet,其中将多尺度局部损失的几个分层阶段集成到优化过程中。该模型根据三个公开可用数据集进行验证:润饰,Optima和Duke,并与几个基线进行了比较。数据集的实验结果证明了在视网膜OCT分割中提出的模型的有效性,并揭示了建议的方法比现有的最新流体分割算法更有效,以适应各种图像扫描仪器记录的视网膜OCT扫描。
translated by 谷歌翻译
卷积神经网络(CNN)的深度学习体系结构在计算机视野领域取得了杰出的成功。 CNN构建的编码器架构U-Net在生物医学图像分割方面取得了重大突破,并且已在各种实用的情况下应用。但是,编码器部分中每个下采样层和简单堆积的卷积的平等设计不允许U-NET从不同深度提取足够的特征信息。医学图像的复杂性日益增加为现有方法带来了新的挑战。在本文中,我们提出了一个更深层,更紧凑的分裂注意U形网络(DCSAU-NET),该网络有效地利用了基于两个新颖框架的低级和高级语义信息:主要功能保护和紧凑的分裂注意力堵塞。我们评估了CVC-ClinicDB,2018 Data Science Bowl,ISIC-2018和SEGPC-2021数据集的建议模型。结果,DCSAU-NET在联合(MIOU)和F1-SOCRE的平均交点方面显示出比其他最先进的方法(SOTA)方法更好的性能。更重要的是,提出的模型在具有挑战性的图像上表现出了出色的细分性能。我们的工作代码以及更多技术细节,请访问https://github.com/xq141839/dcsau-net。
translated by 谷歌翻译
最新的语义分段方法采用具有编码器解码器架构的U-Net框架。 U-Net仍然具有挑战性,具有简单的跳过连接方案来模拟全局多尺度上下文:1)由于编码器和解码器级的不兼容功能集的问题,并非每个跳过连接设置都是有效的,甚至一些跳过连接对分割性能产生负面影响; 2)原始U-Net比某些数据集上没有任何跳过连接的U-Net更糟糕。根据我们的调查结果,我们提出了一个名为Uctransnet的新分段框架(在U-Net中的提议CTRANS模块),从引导机制的频道视角。具体地,CTRANS模块是U-NET SKIP连接的替代,其包括与变压器(命名CCT)和子模块通道 - 明智的跨关注进行多尺度信道交叉融合的子模块(命名为CCA)以指导熔融的多尺度通道 - 明智信息,以有效地连接到解码器功能以消除歧义。因此,由CCT和CCA组成的所提出的连接能够替换原始跳过连接以解决精确的自动医学图像分割的语义间隙。实验结果表明,我们的UCTRANSNET产生更精确的分割性能,并通过涉及变压器或U形框架的不同数据集和传统架构的语义分割来实现一致的改进。代码:https://github.com/mcgregorwwwww/uctransnet。
translated by 谷歌翻译
Covid-19的传播给世界带来了巨大的灾难,自动分割感染区域可以帮助医生快速诊断并减少工作量。但是,准确和完整的分割面临一些挑战,例如散射的感染区分布,复杂的背景噪声和模糊的分割边界。为此,在本文中,我们提出了一个新的网络,用于从CT图像(名为BCS-NET)的自动covid-19肺部感染分割,该网络考虑了边界,上下文和语义属性。 BCS-NET遵循编码器架构,更多的设计集中在解码器阶段,该阶段包括三个逐渐边界上下文 - 语义重建(BCSR)块。在每个BCSR块中,注意引导的全局上下文(AGGC)模块旨在通过突出显示重要的空间和边界位置并建模全局上下文依赖性来学习解码器最有价值的编码器功能。此外,语义指南(SG)单元通过在中间分辨率上汇总多规模的高级特征来生成语义指南图来完善解码器特征。广泛的实验表明,我们提出的框架在定性和定量上都优于现有竞争对手。
translated by 谷歌翻译
人行道表面数据的获取和评估在路面条件评估中起着至关重要的作用。在本文中,提出了一个称为RHA-NET的自动路面裂纹分割的有效端到端网络,以提高路面裂纹分割精度。 RHA-NET是通过将残留块(重阻)和混合注意块集成到编码器架构结构中来构建的。这些重组用于提高RHA-NET提取高级抽象特征的能力。混合注意块旨在融合低级功能和高级功能,以帮助模型专注于正确的频道和裂纹区域,从而提高RHA-NET的功能表现能力。构建并用于训练和评估所提出的模型的图像数据集,其中包含由自设计的移动机器人收集的789个路面裂纹图像。与其他最先进的网络相比,所提出的模型在全面的消融研究中验证了添加残留块和混合注意机制的功能。此外,通过引入深度可分离卷积生成的模型的轻加权版本可以更好地实现性能和更快的处理速度,而U-NET参数数量的1/30。开发的系统可以在嵌入式设备Jetson TX2(25 fps)上实时划分路面裂纹。实时实验拍摄的视频将在https://youtu.be/3xiogk0fig4上发布。
translated by 谷歌翻译
对医学图像的器官或病变的准确分割对于可靠的疾病和器官形态计量学的可靠诊断至关重要。近年来,卷积编码器解码器解决方案在自动医疗图像分割领域取得了重大进展。由于卷积操作中的固有偏见,先前的模型主要集中在相邻像素形成的局部视觉提示上,但无法完全对远程上下文依赖性进行建模。在本文中,我们提出了一个新型的基于变压器的注意力指导网络,称为Transattunet,其中多层引导注意力和多尺度跳过连接旨在共同增强语义分割体系结构的性能。受到变压器的启发,具有变压器自我注意力(TSA)和全球空间注意力(GSA)的自我意识注意(SAA)被纳入Transattunet中,以有效地学习编码器特征之间的非本地相互作用。此外,我们还使用解码器块之间的其他多尺度跳过连接来汇总具有不同语义尺度的上采样功能。这样,多尺度上下文信息的表示能力就可以增强以产生判别特征。从这些互补组件中受益,拟议的Transattunet可以有效地减轻卷积层堆叠和连续采样操作引起的细节损失,最终提高医学图像的细分质量。来自不同成像方式的多个医疗图像分割数据集进行了广泛的实验表明,所提出的方法始终优于最先进的基线。我们的代码和预培训模型可在以下网址找到:https://github.com/yishuliu/transattunet。
translated by 谷歌翻译
由于不规则的形状,正常和感染组织之间的各种尺寸和无法区分的边界,仍然是一种具有挑战性的任务,可以准确地在CT图像上进行Covid-19的感染病变。在本文中,提出了一种新的分段方案,用于通过增强基于编码器 - 解码器架构的不同级别的监督信息和融合多尺度特征映射来感染Covid-19。为此,提出了深入的协作监督(共同监督)计划,以指导网络学习边缘和语义的特征。更具体地,首先设计边缘监控模块(ESM),以通过将边缘监督信息结合到初始阶段的下采样的初始阶段来突出显示低电平边界特征。同时,提出了一种辅助语义监督模块(ASSM)来加强通过将掩码监督信息集成到稍后阶段来加强高电平语义信息。然后,通过使用注意机制来扩展高级和低电平特征映射之间的语义间隙,开发了一种注意融合模块(AFM)以融合不同级别的多个规模特征图。最后,在四个各种Covid-19 CT数据集上证明了所提出的方案的有效性。结果表明,提出的三个模块都是有希望的。基于基线(RESUNT),单独使用ESM,ASSM或AFM可以分别将骰子度量增加1.12 \%,1.95 \%,1.63 \%,而在我们的数据集中,通过将三个模型结合在一起可以上升3.97 \% 。与各个数据集的现有方法相比,所提出的方法可以在某些主要指标中获得更好的分段性能,并可实现最佳的泛化和全面的性能。
translated by 谷歌翻译
深度学习技术的进步为生物医学图像分析应用产生了巨大的贡献。随着乳腺癌是女性中最致命的疾病,早期检测是提高生存能力的关键手段。如超声波的医学成像呈现出色器官功能的良好视觉表现;然而,对于任何分析这种扫描的放射科学家,这种扫描是挑战和耗时,这延迟了诊断过程。虽然提出了各种深度学习的方法,但是通过乳房超声成像介绍了具有最有效的残余交叉空间关注引导u-Net(RCA-IUnet)模型的最小训练参数,以进一步改善肿瘤分割不同肿瘤尺寸的分割性能。 RCA-IUNET模型跟随U-Net拓扑,剩余初始化深度可分离卷积和混合池(MAX池和光谱池)层。此外,添加了交叉空间注意滤波器以抑制无关的特征并专注于目标结构。建议模型的分割性能在使用标准分割评估指标的两个公共数据集上验证,其中它表现出其他最先进的分段模型。
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像分割,并且录制了录制了该领域深度学习的成功的大量论文。在本文中,我们使用深层学习技术对医学图像分割的全面主题调查。本文进行了两个原创贡献。首先,与传统调查相比,直接将深度学习的文献分成医学图像分割的文学,并为每组详细介绍了文献,我们根据从粗略到精细的多级结构分类目前流行的文献。其次,本文侧重于监督和弱监督的学习方法,而不包括无监督的方法,因为它们在许多旧调查中引入而且他们目前不受欢迎。对于监督学习方法,我们分析了三个方面的文献:骨干网络的选择,网络块的设计,以及损耗功能的改进。对于虚弱的学习方法,我们根据数据增强,转移学习和交互式分割进行调查文献。与现有调查相比,本调查将文献分类为比例不同,更方便读者了解相关理由,并将引导他们基于深度学习方法思考医学图像分割的适当改进。
translated by 谷歌翻译
Achieving accurate and automated tumor segmentation plays an important role in both clinical practice and radiomics research. Segmentation in medicine is now often performed manually by experts, which is a laborious, expensive and error-prone task. Manual annotation relies heavily on the experience and knowledge of these experts. In addition, there is much intra- and interobserver variation. Therefore, it is of great significance to develop a method that can automatically segment tumor target regions. In this paper, we propose a deep learning segmentation method based on multimodal positron emission tomography-computed tomography (PET-CT), which combines the high sensitivity of PET and the precise anatomical information of CT. We design an improved spatial attention network(ISA-Net) to increase the accuracy of PET or CT in detecting tumors, which uses multi-scale convolution operation to extract feature information and can highlight the tumor region location information and suppress the non-tumor region location information. In addition, our network uses dual-channel inputs in the coding stage and fuses them in the decoding stage, which can take advantage of the differences and complementarities between PET and CT. We validated the proposed ISA-Net method on two clinical datasets, a soft tissue sarcoma(STS) and a head and neck tumor(HECKTOR) dataset, and compared with other attention methods for tumor segmentation. The DSC score of 0.8378 on STS dataset and 0.8076 on HECKTOR dataset show that ISA-Net method achieves better segmentation performance and has better generalization. Conclusions: The method proposed in this paper is based on multi-modal medical image tumor segmentation, which can effectively utilize the difference and complementarity of different modes. The method can also be applied to other multi-modal data or single-modal data by proper adjustment.
translated by 谷歌翻译
U-Net and its extensions have achieved great success in medical image segmentation. However, due to the inherent local characteristics of ordinary convolution operations, U-Net encoder cannot effectively extract global context information. In addition, simple skip connections cannot capture salient features. In this work, we propose a fully convolutional segmentation network (CMU-Net) which incorporates hybrid convolutions and multi-scale attention gate. The ConvMixer module extracts global context information by mixing features at distant spatial locations. Moreover, the multi-scale attention gate emphasizes valuable features and achieves efficient skip connections. We evaluate the proposed method using both breast ultrasound datasets and a thyroid ultrasound image dataset; and CMU-Net achieves average Intersection over Union (IoU) values of 73.27% and 84.75%, and F1 scores of 84.81% and 91.71%. The code is available at https://github.com/FengheTan9/CMU-Net.
translated by 谷歌翻译
大多数息肉分段方法使用CNNS作为其骨干,导致在编码器和解码器之间的信息交换信息时的两个关键问题:1)考虑到不同级别特征之间的贡献的差异; 2)设计有效机制,以融合这些功能。不同于现有的基于CNN的方法,我们采用了一个变压器编码器,它学会了更强大和强大的表示。此外,考虑到息肉的图像采集影响和难以实现的性质,我们介绍了三种新模块,包括级联融合模块(CFM),伪装识别模块(CIM),A和相似性聚集模块(SAM)。其中,CFM用于从高级功能收集息肉的语义和位置信息,而CIM应用于在低级功能中伪装的息肉信息。在SAM的帮助下,我们将息肉区域的像素特征扩展到整个息肉区域的高电平语义位置信息,从而有效地融合了交叉级别特征。所提出的模型名为Polyp-PVT,有效地抑制了特征中的噪声,并显着提高了他们的表现力。在五个广泛采用的数据集上进行了广泛的实验表明,所提出的模型对各种具有挑战性的情况(例如,外观变化,小物体)比现有方法更加强大,并实现了新的最先进的性能。拟议的模型可在https://github.com/dengpingfan/polyp-pvt获得。
translated by 谷歌翻译
Transformer-based models have been widely demonstrated to be successful in computer vision tasks by modelling long-range dependencies and capturing global representations. However, they are often dominated by features of large patterns leading to the loss of local details (e.g., boundaries and small objects), which are critical in medical image segmentation. To alleviate this problem, we propose a Dual-Aggregation Transformer Network called DuAT, which is characterized by two innovative designs, namely, the Global-to-Local Spatial Aggregation (GLSA) and Selective Boundary Aggregation (SBA) modules. The GLSA has the ability to aggregate and represent both global and local spatial features, which are beneficial for locating large and small objects, respectively. The SBA module is used to aggregate the boundary characteristic from low-level features and semantic information from high-level features for better preserving boundary details and locating the re-calibration objects. Extensive experiments in six benchmark datasets demonstrate that our proposed model outperforms state-of-the-art methods in the segmentation of skin lesion images, and polyps in colonoscopy images. In addition, our approach is more robust than existing methods in various challenging situations such as small object segmentation and ambiguous object boundaries.
translated by 谷歌翻译
伪装的对象检测(COD)旨在识别自然场景中隐藏自己的物体。准确的COD遭受了许多与低边界对比度有关的挑战,并且对象出现(例如对象大小和形状)的较大变化。为了应对这些挑战,我们提出了一种新颖的背景感知跨层次融合网络(C2F-net),该网络融合了上下文感知的跨级特征,以准确识别伪装的对象。具体而言,我们通过注意力诱导的跨融合模块(ACFM)来计算来自多级特征的内容丰富的注意系数,该模块(ACFM)进一步在注意系数的指导下进一步集成了特征。然后,我们提出了一个双分支全局上下文模块(DGCM),以通过利用丰富的全球上下文信息来完善内容丰富的功能表示的融合功能。多个ACFM和DGCM以级联的方式集成,以产生高级特征的粗略预测。粗糙的预测充当了注意力图,以完善低级特征,然后再将其传递到我们的伪装推断模块(CIM)以生成最终预测。我们对三个广泛使用的基准数据集进行了广泛的实验,并将C2F-NET与最新模型(SOTA)模型进行比较。结果表明,C2F-NET是一种有效的COD模型,并且表现出明显的SOTA模型。此外,对息肉细分数据集的评估证明了我们在COD下游应用程序中C2F-NET的有希望的潜力。我们的代码可在以下网址公开获取:https://github.com/ben57882/c2fnet-tscvt。
translated by 谷歌翻译
尽管已经开发了疫苗,并且国家疫苗接种率正在稳步提高,但2019年冠状病毒病(COVID-19)仍对世界各地的医疗保健系统产生负面影响。在当前阶段,从CT图像中自动分割肺部感染区域对于诊断和治疗COVID-19至关重要。得益于深度学习技术的发展,已经提出了一些针对肺部感染细分的深度学习解决方案。但是,由于分布分布,复杂的背景干扰和界限模糊,现有模型的准确性和完整性仍然不令人满意。为此,我们在本文中提出了一个边界引导的语义学习网络(BSNET)。一方面,结合顶级语义保存和渐进式语义集成的双分支语义增强模块旨在建模不同的高级特征之间的互补关系,从而促进产生更完整的分割结果。另一方面,提出了镜像对称边界引导模块,以以镜像对称方式准确检测病变区域的边界。公开可用数据集的实验表明,我们的BSNET优于现有的最新竞争对手,并实现了44 fps的实时推理速度。
translated by 谷歌翻译
最先进的深度学习方法在分割任务中表现出令人印象深刻的性能。然而,这些方法的成功取决于大量手动标记的掩模,这是昂贵且耗时的收集。在这项工作中,提出了一种新的一致性感知的对抗网络(Cpgan),用于半监督卒中病变细分。拟议的CPGAN可以减少对完全标记的样品的依赖。具体地,设计相似性连接模块(SCM)以捕获多尺度特征的信息。所提出的SCM可以通过加权和选择性地聚合每个位置处的特征。此外,将一致的感知策略引入所提出的模型中,以增强脑卒中病变预测对未标记数据的影响。此外,构建助理网络以鼓励鉴别者学习在训练阶段期间经常被遗忘的有意义的特征表示。助理网络和鉴别者用于共同决定分割结果是否是真实的或假的。 CPGAN在中风(ATLAS)后病变的解剖学描记。实验结果表明,所提出的网络实现了卓越的分割性能。在半监督分割任务中,使用只有五分之二的标记样本的建议的CPGAN优于使用完整标记样本的一些方法。
translated by 谷歌翻译
识别息肉对于在计算机辅助临床支持系统中自动分析内窥镜图像的自动分析具有挑战性。已经提出了基于卷积网络(CNN),变压器及其组合的模型,以分割息肉以有希望的结果。但是,这些方法在模拟息肉的局部外观方面存在局限性,或者在解码过程中缺乏用于空间依赖性的多层次特征。本文提出了一个新颖的网络,即结肠形式,以解决这些局限性。 Colonformer是一种编码器架构,能够在编码器和解码器分支上对远程语义信息进行建模。编码器是一种基于变压器的轻量级体系结构,用于在多尺度上建模全局语义关系。解码器是一种层次结构结构,旨在学习多层功能以丰富特征表示。此外,添加了一个新的Skip连接技术,以完善整体地图中的息肉对象的边界以进行精确分割。已经在五个流行的基准数据集上进行了广泛的实验,以进行息肉分割,包括Kvasir,CVC-Clinic DB,CVC-ColondB,CVC-T和Etis-Larib。实验结果表明,我们的结肠构造者在所有基准数据集上的表现优于其他最先进的方法。
translated by 谷歌翻译