这项工作认为有监督的对比度学习语义细分。我们应用对比度学习来增强语义分割网络提取的多尺度特征的判别能力。我们的关键方法论洞察力是利用从模型编码器本身的多个阶段发出的特征空间中的样本,既不需要数据增强,也不需要在线存储库来获取一组不同的样本。为了允许这样的扩展,我们引入了一个高效且有效的抽样过程,可以在多个尺度上对编码器的特征应用对比度损失。此外,通过首先将编码器的多尺度表示形式映射到一个共同的特征空间,我们通过引入跨尺度对比度学习将高分辨率局部特征与低分辨率全球特征联系起来,从而实例化了一种新颖的监督局部全球约束形式。合并,我们的多尺度和跨尺度对比度损失可提高各种模型(DeepLabv3,hrnet,ocrnet,upernet)的性能,以及CNN和Transformer骨架,当对4个不同的数据集进行评估(CityScapes,PascalContext,ADE20K)时,对4个不同的数据集进行了评估。外科(CADIS)域。我们的代码可在https://github.com/rvimla​​b/ms_cs_contrseg上找到。来自天然(CityScapes,PascalContext,ADE20K)的数据集,也是外科手术(CADIS)域。
translated by 谷歌翻译
上下文信息对于各种计算机视觉任务至关重要,以前的作品通常设计插件模块和结构损失,以有效地提取和汇总全局上下文。这些方法利用优质标签来优化模型,但忽略了精细训练的特征也是宝贵的训练资源,可以将优选的分布引入硬像素(即错误分类的像素)。受到无监督范式的对比学习的启发,我们以监督的方式应用了对比度损失,并重新设计了损失功能,以抛弃无监督学习的刻板印象(例如,积极和负面的不平衡,对锚定计算的混淆)。为此,我们提出了阳性阴性相等的对比损失(PNE损失),这增加了阳性嵌入对锚的潜在影响,并同时对待阳性和阴性样本对。 PNE损失可以直接插入现有的语义细分框架中,并以可忽视的额外计算成本导致出色的性能。我们利用许多经典的分割方法(例如,DeepLabv3,Ocrnet,Upernet)和骨干(例如Resnet,Hrnet,Swin Transformer)进行全面的实验,并在两个基准数据集(例如,例如,例如,,例如城市景观和可可固定)。我们的代码将公开
translated by 谷歌翻译
视觉表示学习是解决各种视力问题的关键。依靠开创性的网格结构先验,卷积神经网络(CNN)已成为大多数深视觉模型的事实上的标准架构。例如,经典的语义分割方法通常采用带有编码器编码器体系结构的完全横向卷积网络(FCN)。编码器逐渐减少了空间分辨率,并通过更大的接受场来学习更多抽象的视觉概念。由于上下文建模对于分割至关重要,因此最新的努力一直集中在通过扩张(即极度)卷积或插入注意力模块来增加接受场。但是,基于FCN的体系结构保持不变。在本文中,我们旨在通过将视觉表示学习作为序列到序列预测任务来提供替代观点。具体而言,我们部署纯变压器以将图像编码为一系列贴片,而无需局部卷积和分辨率减少。通过在变压器的每一层中建立的全球环境,可以学习更强大的视觉表示形式,以更好地解决视力任务。特别是,我们的细分模型(称为分割变压器(SETR))在ADE20K上擅长(50.28%MIOU,这是提交当天测试排行榜中的第一个位置),Pascal环境(55.83%MIOU),并在CityScapes上达到竞争成果。此外,我们制定了一个分层局部全球(HLG)变压器的家族,其特征是窗户内的本地关注和跨窗户的全球性专注于层次结构和金字塔架构。广泛的实验表明,我们的方法在各种视觉识别任务(例如,图像分类,对象检测和实例分割和语义分割)上实现了吸引力的性能。
translated by 谷歌翻译
现代方法通常将语义分割标记为每个像素分类任务,而使用替代掩码分类处理实例级分割。我们的主要洞察力:掩码分类是足够的一般,可以使用完全相同的模型,丢失和培训过程来解决语义和实例级分段任务。在此观察之后,我们提出了一个简单的掩模分类模型,该模型预测了一组二进制掩码,每个模型与单个全局类标签预测相关联。总的来说,所提出的基于掩模分类的方法简化了语义和Panoptic分割任务的有效方法的景观,并显示出优异的经验结果。特别是,当类的数量大时,我们观察到掩码形成器优于每个像素分类基线。我们的面具基于分类的方法优于当前最先进的语义(ADE20K上的55.6 miou)和Panoptic Seation(Coco)模型的Panoptic Seationation(52.7 PQ)。
translated by 谷歌翻译
自我监督的对比学习的最新进展产生了良好的图像级表示,这有利于分类任务,但通常会忽略像素级详细信息,从而导致转移性能不令人满意地转移到密集的预测任务,例如语义细分。在这项工作中,我们提出了一种称为CP2的像素对比度学习方法(拷贝性对比度预处理),该方法促进了图像和像素级表示学习,因此更适合下游密集的预测任务。详细说明,我们将随机的作物从图像(前景)复制到不同的背景图像,并为语义分割模型提供了以1)为目标的语义分割模型。共享相同的前景。表现出色表明CP2在下游语义分段中的表现强劲:通过对Pascal VOC 2012上的CP2预审计的模型,我们获得了78.6%MIOU,具有RESNET-50和79.5%的vit-s。
translated by 谷歌翻译
Contrastive learning methods for unsupervised visual representation learning have reached remarkable levels of transfer performance. We argue that the power of contrastive learning has yet to be fully unleashed, as current methods are trained only on instance-level pretext tasks, leading to representations that may be sub-optimal for downstream tasks requiring dense pixel predictions. In this paper, we introduce pixel-level pretext tasks for learning dense feature representations. The first task directly applies contrastive learning at the pixel level. We additionally propose a pixel-to-propagation consistency task that produces better results, even surpassing the state-of-the-art approaches by a large margin. Specifically, it achieves 60.2 AP, 41.4 / 40.5 mAP and 77.2 mIoU when transferred to Pascal VOC object detection (C4), COCO object detection (FPN / C4) and Cityscapes semantic segmentation using a ResNet-50 backbone network, which are 2.6 AP, 0.8 / 1.0 mAP and 1.0 mIoU better than the previous best methods built on instance-level contrastive learning. Moreover, the pixel-level pretext tasks are found to be effective for pretraining not only regular backbone networks but also head networks used for dense downstream tasks, and are complementary to instance-level contrastive methods. These results demonstrate the strong potential of defining pretext tasks at the pixel level, and suggest a new path forward in unsupervised visual representation learning. Code is available at https://github.com/zdaxie/PixPro.
translated by 谷歌翻译
对比自我监督的学习已经超越了许多下游任务的监督预测,如分割和物体检测。但是,当前的方法仍然主要应用于像想象成的策划数据集。在本文中,我们首先研究数据集中的偏差如何影响现有方法。我们的研究结果表明,目前的对比方法令人惊讶地工作:(i)对象与场景为中心,(ii)统一与长尾和(iii)一般与域特定的数据集。其次,鉴于这种方法的一般性,我们尝试通过微小的修改来实现进一步的收益。我们展示了学习额外的修正 - 通过使用多尺度裁剪,更强的增强和最近的邻居 - 改善了表示。最后,我们观察Moco在用多作物策略训练时学习空间结构化表示。表示可以用于语义段检索和视频实例分段,而不会FineTuning。此外,结果与专门模型相提并论。我们希望这项工作将成为其他研究人员的有用研究。代码和模型可在https://github.com/wvanganebleke/revisiting-contrastive-ssl上获得。
translated by 谷歌翻译
共同出现的视觉模式使上下文聚集成为语义分割的重要范式。现有的研究重点是建模图像中的上下文,同时忽略图像以下相应类别的有价值的语义。为此,我们提出了一个新颖的软采矿上下文信息,超出了名为McIbi ++的图像范式,以进一步提高像素级表示。具体来说,我们首先设置了动态更新的内存模块,以存储各种类别的数据集级别的分布信息,然后利用信息在网络转发过程中产生数据集级别类别表示。之后,我们为每个像素表示形式生成一个类概率分布,并以类概率分布作为权重进行数据集级上下文聚合。最后,使用汇总的数据集级别和传统的图像级上下文信息来增强原始像素表示。此外,在推论阶段,我们还设计了一种粗到最新的迭代推理策略,以进一步提高分割结果。 MCIBI ++可以轻松地纳入现有的分割框架中,并带来一致的性能改进。此外,MCIBI ++可以扩展到视频语义分割框架中,比基线进行了大量改进。配备MCIBI ++,我们在七个具有挑战性的图像或视频语义分段基准测试中实现了最先进的性能。
translated by 谷歌翻译
在这项工作中,我们提出了Cluda,这是一种简单而又新颖的方法,用于通过将对比损失纳入学生教师学习范式中,以进行语义分割,以进行语义分割,以利用伪标记,以通过伪标记产生的伪标记。教师网络。更具体地说,我们从编码器中提取多级融合功能图,并通过图像的源目标混合使用不同类别和不同域的对比度损失。我们始终提高各种特征编码器体系结构和语义分割中不同域适应数据集的性能。此外,我们引入了一种学识渊博的对比损失,以改善UDA最先进的多分辨率训练方法。我们在gta $ \ rightarrow $ cityScapes(74.4 miou,+0.6)和Synthia $ \ rightarrow $ cityScapes(67.2 miou,+1.4)数据集上产生最先进的结果。 Cluda有效地证明了UDA中的对比度学习是一种通用方法,可以轻松地将其集成到任何现有的UDA中以进行语义分割任务。有关实施的详细信息,请参考补充材料。
translated by 谷歌翻译
本文介绍了密集的暹罗网络(Denseiam),这是一个简单的无监督学习框架,用于密集的预测任务。它通过以两种类型的一致性(即像素一致性和区域一致性)之间最大化一个图像的两个视图之间的相似性来学习视觉表示。具体地,根据重叠区域中的确切位置对应关系,Denseiam首先最大化像素级的空间一致性。它还提取一批与重叠区域中某些子区域相对应的区域嵌入,以形成区域一致性。与以前需要负像素对,动量编码器或启发式面膜的方法相反,Denseiam受益于简单的暹罗网络,并优化了不同粒度的一致性。它还证明了简单的位置对应关系和相互作用的区域嵌入足以学习相似性。我们将Denseiam应用于ImageNet,并在各种下游任务上获得竞争性改进。我们还表明,只有在一些特定于任务的损失中,简单的框架才能直接执行密集的预测任务。在现有的无监督语义细分基准中,它以2.1 miou的速度超过了最新的细分方法,培训成本为28%。代码和型号在https://github.com/zwwwayne/densesiam上发布。
translated by 谷歌翻译
在图像变压器网络的编码器部分中的FineTuning佩带的骨干网一直是语义分段任务的传统方法。然而,这种方法揭示了图像在编码阶段提供的语义上下文。本文认为将图像的语义信息纳入预磨料的基于分层变换器的骨干,而FineTuning可显着提高性能。为实现这一目标,我们提出了一个简单且有效的框架,在语义关注操作的帮助下将语义信息包含在编码器中。此外,我们在训练期间使用轻量级语义解码器,为每个阶段提供监督对中间语义的先前地图。我们的实验表明,结合语义前导者增强了所建立的分层编码器的性能,随着絮凝物的数量略有增加。我们通过将Sromask集成到Swin-Cransformer的每个变体中提供了经验证明,因为我们的编码器与不同的解码器配对。我们的框架在CudeScapes数据集上实现了ADE20K数据集的新型58.22%的MIOU,并在Miou指标中提高了超过3%的内容。代码和检查点在https://github.com/picsart-ai-research/semask-egation上公开使用。
translated by 谷歌翻译
Most recent semantic segmentation methods adopt a fully-convolutional network (FCN) with an encoderdecoder architecture. The encoder progressively reduces the spatial resolution and learns more abstract/semantic visual concepts with larger receptive fields. Since context modeling is critical for segmentation, the latest efforts have been focused on increasing the receptive field, through either dilated/atrous convolutions or inserting attention modules. However, the encoder-decoder based FCN architecture remains unchanged. In this paper, we aim to provide an alternative perspective by treating semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer (i.e., without convolution and resolution reduction) to encode an image as a sequence of patches. With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR). Extensive experiments show that SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes. Particularly, we achieve the first position in the highly competitive ADE20K test server leaderboard on the day of submission.
translated by 谷歌翻译
人们普遍认为,对于准确的语义细分,必须使用昂贵的操作(例如,非常卷积)结合使用昂贵的操作(例如非常卷积),从而导致缓慢的速度和大量的内存使用。在本文中,我们质疑这种信念,并证明既不需要高度的内部决议也不是必需的卷积。我们的直觉是,尽管分割是一个每像素的密集预测任务,但每个像素的语义通常都取决于附近的邻居和遥远的环境。因此,更强大的多尺度功能融合网络起着至关重要的作用。在此直觉之后,我们重新访问常规的多尺度特征空间(通常限制为P5),并将其扩展到更丰富的空间,最小的P9,其中最小的功能仅为输入大小的1/512,因此具有很大的功能接受场。为了处理如此丰富的功能空间,我们利用最近的BIFPN融合了多尺度功能。基于这些见解,我们开发了一个简化的分割模型,称为ESEG,该模型既没有内部分辨率高,也没有昂贵的严重卷积。也许令人惊讶的是,与多个数据集相比,我们的简单方法可以以比以前的艺术更快地实现更高的准确性。在实时设置中,ESEG-Lite-S在189 fps的CityScapes [12]上达到76.0%MIOU,表现优于更快的[9](73.1%MIOU时为170 fps)。我们的ESEG-LITE-L以79 fps的速度运行,达到80.1%MIOU,在很大程度上缩小了实时和高性能分割模型之间的差距。
translated by 谷歌翻译
自我监督学习(SSL)的承诺是利用大量未标记的数据来解决复杂的任务。尽管简单,图像级学习取得了出色的进步,但最新方法显示出包括图像结构知识的优势。但是,通过引入手工制作的图像分割来定义感兴趣的区域或专门的增强策略,这些方法牺牲了使SSL如此强大的简单性和通用性。取而代之的是,我们提出了一个自我监督的学习范式,该学习范式本身会发现这种图像结构。我们的方法,ODIN,夫妻对象发现和表示网络,以发现有意义的图像分割,而无需任何监督。由此产生的学习范式更简单,更易碎,更一般,并且取得了最先进的转移学习结果,以进行对象检测和实例对可可的细分,以及对Pascal和CityScapes的语义细分,同时超过监督的预先培训,用于戴维斯的视频细分。
translated by 谷歌翻译
已知预测的集合,而是比单独采取的个体预测更好地执行更好。但是,对于需要重型计算资源的任务,\ texit {例如}语义细分,创建需要单独培训的学习者的集合几乎没有易行。在这项工作中,我们建议利用集合方法提供的性能提升,以增强语义分割,同时避免了集合的传统训练成本。我们的自我集成框架利用了通过特征金字塔网络方法生产的多尺度功能来提供独立解码器,从而在单个模型中创建集合。类似于集合,最终预测是每个学习者所做的预测的聚合。与以前的作品相比,我们的模型可以训练结束,减轻了传统的繁琐多阶段培训的合奏。我们的自身融合框架优于当前最先进的基准数据集ADE20K,Pascal Context和Coco-Stuff-10K用于语义细分,并且在城市景观竞争。代码将在Github.com/walbouss/senformer上使用。
translated by 谷歌翻译
Image segmentation is often ambiguous at the level of individual image patches and requires contextual information to reach label consensus. In this paper we introduce Segmenter, a transformer model for semantic segmentation. In contrast to convolution-based methods, our approach allows to model global context already at the first layer and throughout the network. We build on the recent Vision Transformer (ViT) and extend it to semantic segmentation. To do so, we rely on the output embeddings corresponding to image patches and obtain class labels from these embeddings with a point-wise linear decoder or a mask transformer decoder. We leverage models pre-trained for image classification and show that we can fine-tune them on moderate sized datasets available for semantic segmentation. The linear decoder allows to obtain excellent results already, but the performance can be further improved by a mask transformer generating class masks. We conduct an extensive ablation study to show the impact of the different parameters, in particular the performance is better for large models and small patch sizes. Segmenter attains excellent results for semantic segmentation. It outperforms the state of the art on both ADE20K and Pascal Context datasets and is competitive on Cityscapes.
translated by 谷歌翻译
Vision transformers (ViTs) encoding an image as a sequence of patches bring new paradigms for semantic segmentation.We present an efficient framework of representation separation in local-patch level and global-region level for semantic segmentation with ViTs. It is targeted for the peculiar over-smoothness of ViTs in semantic segmentation, and therefore differs from current popular paradigms of context modeling and most existing related methods reinforcing the advantage of attention. We first deliver the decoupled two-pathway network in which another pathway enhances and passes down local-patch discrepancy complementary to global representations of transformers. We then propose the spatially adaptive separation module to obtain more separate deep representations and the discriminative cross-attention which yields more discriminative region representations through novel auxiliary supervisions. The proposed methods achieve some impressive results: 1) incorporated with large-scale plain ViTs, our methods achieve new state-of-the-art performances on five widely used benchmarks; 2) using masked pre-trained plain ViTs, we achieve 68.9% mIoU on Pascal Context, setting a new record; 3) pyramid ViTs integrated with the decoupled two-pathway network even surpass the well-designed high-resolution ViTs on Cityscapes; 4) the improved representations by our framework have favorable transferability in images with natural corruptions. The codes will be released publicly.
translated by 谷歌翻译
最近建议的MaskFormer \ Cite {MaskFormer}对语义分割的任务提供了刷新的透视图:它从流行的像素级分类范例转移到蒙版级分类方法。实质上,它生成对应于类别段的配对概率和掩码,并在推理的分割映射期间结合它们。因此,分割质量依赖于查询如何捕获类别的语义信息及其空间位置。在我们的研究中,我们发现单尺度特征顶部的每个掩模分类解码器不足以提取可靠的概率或掩模。对于挖掘功能金字塔的丰富语义信息,我们提出了一个基于变压器的金字塔融合变压器(PFT),用于多尺度特征顶部的每个掩模方法语义分段。为了有效地利用不同分辨率的图像特征而不会产生过多的计算开销,PFT使用多尺度变压器解码器,具有跨尺度间间的关注来交换互补信息。广泛的实验评估和消融展示了我们框架的功效。特别是,与屏蔽Former相比,我们通过Reset-101c实现了3.2 miou改进了Reset-101c。此外,在ADE20K验证集上,我们的Swin-B骨架的结果与单尺度和多尺寸推断的屏蔽骨架中的较大的Swin-L骨架相匹配,分别实现54.1 miou和55.3 miou。使用Swin-L骨干,我们在ADE20K验证集中实现了56.0 Miou单尺度结果和57.2多尺度结果,从而获得数据集的最先进的性能。
translated by 谷歌翻译
我们提出Segnext,这是一种简单的卷积网络体系结构,用于语义分割。由于自我注意力在编码空间信息中的效率,基于变压器的最新模型已主导语义分割领域。在本文中,我们表明卷积注意是一种比变形金刚中的自我注意机制更有效的编码上下文信息的方法。通过重新检查成功分割模型所拥有的特征,我们发现了几个关键组件,从而导致分割模型的性能提高。这促使我们设计了一个新型的卷积注意网络,该网络使用廉价的卷积操作。没有铃铛和哨子,我们的Segnext显着提高了先前最先进的方法对流行基准测试的性能,包括ADE20K,CityScapes,Coco-stuff,Pascal VOC,Pascal Context和ISAID。值得注意的是,segnext优于w/ nas-fpn的效率超过lavenet-l2,在帕斯卡VOC 2012测试排行榜上仅使用1/10参数,在Pascal VOC 2012测试排行榜上达到90.6%。平均而言,与具有相同或更少计算的ADE20K数据集上的最新方法相比,Segnext的改进约为2.0%。代码可在https://github.com/uyzhang/jseg(jittor)和https://github.com/visual-cratch-network/segnext(pytorch)获得。
translated by 谷歌翻译
跨图像建立视觉对应是一项具有挑战性且必不可少的任务。最近,已经提出了大量的自我监督方法,以更好地学习视觉对应的表示。但是,我们发现这些方法通常无法利用语义信息,并且在低级功能的匹配方面过度融合。相反,人类的视觉能够将不同的物体区分为跟踪的借口。受此范式的启发,我们建议学习语义意识的细粒对应关系。首先,我们证明语义对应是通过一组丰富的图像级别自我监督方法隐式获得的。我们进一步设计了一个像素级的自我监督学习目标,该目标专门针对细粒的对应关系。对于下游任务,我们将这两种互补的对应表示形式融合在一起,表明它们是协同增强性能的。我们的方法超过了先前的最先进的自我监督方法,使用卷积网络在各种视觉通信任务上,包括视频对象分割,人姿势跟踪和人类部分跟踪。
translated by 谷歌翻译