常识性推理系统应该能够推广到各种推理案例。但是,大多数最先进的方法都取决于昂贵的数据注释,并且在不学习如何执行一般语义推理的情况下过度适合特定基准。为了克服这些缺点,零射击质量检查系统通过将常识性知识图(kg)转换为合成质量质量质量质量验证样本进行模型训练,已将有望作为强大的学习方案显示出来。考虑到不断增加的不同常识性KG类型,本文旨在将零拍传输的学习方案扩展到多种源设置,在这种设置中,可以协同使用不同的KGS。为了实现这一目标,我们建议通过将知识聚合的模块化变体作为一个新的零摄影常识性推理框架来减轻不同知识源之间的干扰丧失。五个常识性推理基准的结果证明了我们框架的功效,从而改善了多个公斤的性能。
translated by 谷歌翻译
Natural Language Processing (NLP) has been revolutionized by the use of Pre-trained Language Models (PLMs) such as BERT. Despite setting new records in nearly every NLP task, PLMs still face a number of challenges including poor interpretability, weak reasoning capability, and the need for a lot of expensive annotated data when applied to downstream tasks. By integrating external knowledge into PLMs, \textit{\underline{K}nowledge-\underline{E}nhanced \underline{P}re-trained \underline{L}anguage \underline{M}odels} (KEPLMs) have the potential to overcome the above-mentioned limitations. In this paper, we examine KEPLMs systematically through a series of studies. Specifically, we outline the common types and different formats of knowledge to be integrated into KEPLMs, detail the existing methods for building and evaluating KEPLMS, present the applications of KEPLMs in downstream tasks, and discuss the future research directions. Researchers will benefit from this survey by gaining a quick and comprehensive overview of the latest developments in this field.
translated by 谷歌翻译
预训练的语言模型(PLM)在各种自然语言理解任务上取得了巨大的成功。另一方面,对PLM的简单微调对于特定于领域的任务可能是次优的,因为它们不可能涵盖所有域中的知识。尽管PLM的自适应预培训可以帮助他们获得特定于领域的知识,但需要大量的培训成本。此外,自适应预训练可能会通过造成灾难性忘记其常识来损害PLM在下游任务上的表现。为了克服PLM适应性适应性预训练的这种局限性,我们提出了一个新颖的域名适应框架,用于将PLMS创造为知识增强语言模型适应性(KALA),该框架调节了PLM的中间隐藏表示与域中的中间隐藏表示,由实体和实体和实体和实体和实体构成他们的关系事实。我们验证了Kala在问题答案中的性能,并在各个域的多个数据集上命名实体识别任务。结果表明,尽管在计算上有效,但我们的Kala在很大程度上优于适应性预训练。代码可在以下网址获得:https://github.com/nardien/kala/。
translated by 谷歌翻译
Pre-trained Language Models (PLMs) which are trained on large text corpus through the self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Incorporating knowledge into PLMs has been tried to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight the focus of these two kinds of tasks. For NLU, we take several types of knowledge into account and divide them into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.
translated by 谷歌翻译
机器学习方法尤其是深度神经网络取得了巨大的成功,但其中许多往往依赖于一些标记的样品进行训练。在真实世界的应用中,我们经常需要通过例如具有新兴预测目标和昂贵的样本注释的动态上下文来解决样本短缺。因此,低资源学习,旨在学习具有足够资源(特别是培训样本)的强大预测模型,现在正在被广泛调查。在所有低资源学习研究中,许多人更喜欢以知识图(kg)的形式利用一些辅助信息,这对于知识表示变得越来越受欢迎,以减少对标记样本的依赖。在这项调查中,我们非常全面地审查了90美元的报纸关于两个主要的低资源学习设置 - 零射击学习(ZSL)的预测,从未出现过训练,而且很少拍摄的学习(FSL)预测的新类仅具有可用的少量标记样本。我们首先介绍了ZSL和FSL研究中使用的KGS以及现有的和潜在的KG施工解决方案,然后系统地分类和总结了KG感知ZSL和FSL方法,将它们划分为不同的范例,例如基于映射的映射,数据增强,基于传播和基于优化的。我们接下来呈现了不同的应用程序,包括计算机视觉和自然语言处理中的kg增强预测任务,还包括kg完成的任务,以及每个任务的一些典型评估资源。我们最终讨论了一些关于新学习和推理范式的方面的一些挑战和未来方向,以及高质量的KGs的建设。
translated by 谷歌翻译
大型语言模型在零拍摄设置中的许多自然语言处理(NLP)任务中表现出令人印象深刻的性能。我们询问这些模型是否展示了致辞语言 - NLP应用的关键组成部分 - 通过评估四个偶数基准的模型。我们发现大型语言模型的令人印象深刻的零射击性能主要是由于我们的基准测试中的数据集偏差。我们还表明,零拍摄性能对基准的超参数和相似性敏感到预训练数据集。此外,当在几次拍摄设置中评估模型时,我们没有观察大量改进。最后,与以前的工作相比,我们发现利用明确的致辞知识并没有产生重大改善。
translated by 谷歌翻译
This work introduces a new multi-task, parameter-efficient language model (LM) tuning method that learns to transfer knowledge across different tasks via a mixture of soft prompts-small prefix embedding vectors pre-trained for different tasks. Our method, called ATTEMPT (ATTEntional Mixtures of Prompt Tuning), obtains source prompts as encodings of large-scale source tasks into a small number of parameters and trains an attention module to interpolate the source prompts and a newly initialized target prompt for every instance in the target task. During training, only the target task prompt and the attention weights, which are shared between tasks in multi-task training, are updated, while the original LM and source prompts are intact. ATTEMPT is highly parameter-efficient (e.g., updates 2,300 times fewer parameters than full fine-tuning) while achieving high task performance using knowledge from high-resource tasks. Moreover, it is modular using pre-trained soft prompts, and can flexibly add or remove source prompts for effective knowledge transfer. Our experimental results across 21 diverse NLP datasets show that ATTEMPT significantly outperforms prompt tuning and outperforms or matches fully fine-tuned or other parameter-efficient tuning approaches that use over ten times more parameters. Finally, ATTEMPT outperforms previous work in few-shot learning settings.
translated by 谷歌翻译
Recently, domain-specific PLMs have been proposed to boost the task performance of specific domains (e.g., biomedical and computer science) by continuing to pre-train general PLMs with domain-specific corpora. However, this Domain-Adaptive Pre-Training (DAPT; Gururangan et al. (2020)) tends to forget the previous general knowledge acquired by general PLMs, which leads to a catastrophic forgetting phenomenon and sub-optimal performance. To alleviate this problem, we propose a new framework of General Memory Augmented Pre-trained Language Model (G-MAP), which augments the domain-specific PLM by a memory representation built from the frozen general PLM without losing any general knowledge. Specifically, we propose a new memory-augmented layer, and based on it, different augmented strategies are explored to build the memory representation and then adaptively fuse it into the domain-specific PLM. We demonstrate the effectiveness of G-MAP on various domains (biomedical and computer science publications, news, and reviews) and different kinds (text classification, QA, NER) of tasks, and the extensive results show that the proposed G-MAP can achieve SOTA results on all tasks.
translated by 谷歌翻译
如果没有标记的问答对必要的培训对,因此由于知识库(KBS)等勤识来源不可或缺的独特先决条件,这似乎是极具挑战性的,这通常是施工的知识库(KBS)不可或缺的独特先决条件。最近训练的语言模型(PRLMS)表现出效果,作为偶然信念的替代品,当他们发挥知识发生器的作用时。然而,现有的工作简单地产生了数百个伪答案,或者根据所有的模板粗略地执行知识生成,这可能导致很多噪声,从而阻碍了所产生的知识的质量。受人类思维经验的动机,我们提出了一种通过在知识产生的完全关联中通过全面思想家(艺术)的方法。详细地,我们的模型首先侧重于给定的上下文中的关键部件,然后以人类思维等关联方式在这种基础上产生高度相关的知识。此外,为了休闲推理,建议逆向思维机制进行原因和效果之间进行双向推断。艺术是完全无人监督和无kbs的。我们在三个型号QA基准中评估它:COPA,SocialiQA和SCT。在所有PRLM骨架的尺度上,艺术表明其辉煌的性能和优于先前的未经监督模型。
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
预训练的语言模型(PTLM)已显示出在自然语言任务上表现良好。许多先前的作品都以通过知识图(KGS)标记的关系链接的实体的形式利用结构性常识来协助PTLM。检索方法使用kg作为单独的静态模块,该模块限制了覆盖范围,因为kgs包含有限的知识。生成方法训练PTLMS kg三倍以提高获得知识的规模。但是,对符号KG实体的培训限制了其在涉及自然语言文本的任务中的适用性,在这些任务中,它们忽略了整体上下文。为了减轻这种情况,我们提出了一个以句子为条件的常识性上下文化器(COSE-CO)作为输入,以使其在生成与输入文本的整体上下文相关的任务中通常可用。为了训练Cose-Co,我们提出了一个新的数据集,其中包括句子和常识知识对。 COSE-CO推断出的知识是多种多样的,并且包含了基础KG中不存在的新实体。我们增强了在多选质量质量检查和开放式常识性推理任务中产生的知识,从而改善了CSQA,ARC,QASC和OBQA数据集的当前最佳方法。我们还展示了其在改善释义生成任务的基线模型方面的适用性。
translated by 谷歌翻译
Pre-trained language models (PLM) have advanced the state-of-the-art across NLP applications, but lack domain-specific knowledge that does not naturally occur in pre-training data. Previous studies augmented PLMs with symbolic knowledge for different downstream NLP tasks. However, knowledge bases (KBs) utilized in these studies are usually large-scale and static, in contrast to small, domain-specific, and modifiable knowledge bases that are prominent in real-world task-oriented dialogue (TOD) systems. In this paper, we showcase the advantages of injecting domain-specific knowledge prior to fine-tuning on TOD tasks. To this end, we utilize light-weight adapters that can be easily integrated with PLMs and serve as a repository for facts learned from different KBs. To measure the efficacy of proposed knowledge injection methods, we introduce Knowledge Probing using Response Selection (KPRS) -- a probe designed specifically for TOD models. Experiments on KPRS and the response generation task show improvements of knowledge injection with adapters over strong baselines.
translated by 谷歌翻译
今天的大部分AI系统都专注于使用自我关注机制和变压器架构在大量多样化的数据中实现令人印象深刻的性能收益。在本文中,我们建议使用外部注意机制增强变压器架构,以带来外部知识和背景。通过将外部信息集成到预测过程中,我们希望减少对更大的模型的需求,并增加AI系统的民主化。我们发现所提出的外部注意机制可以显着提高现有AI系统的性能,使从业者可以轻松地将基础AI模型自定义到许多不同的下游应用程序。特别是,我们专注于勤杂朗语推理的任务,展示所提出的外部注意机制可以增加现有的变压器模型,并显着提高模型的推理能力。拟议的系统,知识外部关注推理(Kear),达到了开放的铜商QA研究基准的人类奇偶校验,其准确性为89.4 \%,与人类准确性为88.9 \%。
translated by 谷歌翻译
随着时间的流逝,不断扩大知识并利用其快速推广到新任务的能力是人类语言智能的关键特征。然而,现有对新任务进行快速概括的模型(例如,很少的学习方法)主要是在固定数据集中的单个镜头中训练,无法动态扩展其知识;虽然不断学习算法并非专门设计用于快速概括。我们提出了一种新的学习设置,对几杆学习者(CLIF)的持续学习,以应对统一设置的两个学习设置的挑战。 CLIF假设模型从依次到达的一系列不同的NLP任务中学习,从而积累了知识,以改善对新任务的概括,同时还保留了较早所学的任务的性能。我们研究了在持续学习设置中如何影响概括能力,评估许多持续学习算法,并提出一种新型的正则适配器生成方法。我们发现,灾难性的遗忘影响着概括能力的程度远低于所见任务的表现。虽然持续学习算法仍然可以为概括能力带来可观的好处。
translated by 谷歌翻译
Sparsity of formal knowledge and roughness of non-ontological construction make sparsity problem particularly prominent in Open Knowledge Graphs (OpenKGs). Due to sparse links, learning effective representation for few-shot entities becomes difficult. We hypothesize that by introducing negative samples, a contrastive learning (CL) formulation could be beneficial in such scenarios. However, existing CL methods model KG triplets as binary objects of entities ignoring the relation-guided ternary propagation patterns and they are too generic, i.e., they ignore zero-shot, few-shot and synonymity problems that appear in OpenKGs. To address this, we propose TernaryCL, a CL framework based on ternary propagation patterns among head, relation and tail. TernaryCL designs Contrastive Entity and Contrastive Relation to mine ternary discriminative features with both negative entities and relations, introduces Contrastive Self to help zero- and few-shot entities learn discriminative features, Contrastive Synonym to model synonymous entities, and Contrastive Fusion to aggregate graph features from multiple paths. Extensive experiments on benchmarks demonstrate the superiority of TernaryCL over state-of-the-art models.
translated by 谷歌翻译
知识增强的预训练预审语言模型(Keplms)是预先接受的模型,具有从知识图中注入的关系三元组,以提高语言理解能力。为了保证有效的知识注入,之前的研究将模型与知识编码器集成,以表示从知识图表中检索的知识。知识检索和编码的操作带来了重要的计算负担,限制了在需要高推理速度的现实应用程序中使用这些模型。在本文中,我们提出了一种名为DKPLM的新型KEPLM,其在预训练,微调和推理阶段进行了预先训练的语言模型的知识注射过程,这有助于KEPLMS在现实世界场景中的应用。具体而言,我们首先检测知识感知的长尾实体作为知识注射的目标,增强了Keplms的语义理解能力,避免注入冗余信息。长尾实体的嵌入式被相关知识三元组形成的“伪令牌表示”取代。我们进一步设计了用于预培训的关系知识解码任务,以强制模型通过关系三重重建来真正了解注入的知识。实验表明,我们的模型在零拍摄知识探测任务和多种知识意识语言理解任务中显着优于其他KEPLS。我们进一步表明,由于分解机制,DKPLM具有比其他竞争模型更高的推理速度。
translated by 谷歌翻译
Question Answering (QA) is a task that entails reasoning over natural language contexts, and many relevant works augment language models (LMs) with graph neural networks (GNNs) to encode the Knowledge Graph (KG) information. However, most existing GNN-based modules for QA do not take advantage of rich relational information of KGs and depend on limited information interaction between the LM and the KG. To address these issues, we propose Question Answering Transformer (QAT), which is designed to jointly reason over language and graphs with respect to entity relations in a unified manner. Specifically, QAT constructs Meta-Path tokens, which learn relation-centric embeddings based on diverse structural and semantic relations. Then, our Relation-Aware Self-Attention module comprehensively integrates different modalities via the Cross-Modal Relative Position Bias, which guides information exchange between relevant entities of different modalities. We validate the effectiveness of QAT on commonsense question answering datasets like CommonsenseQA and OpenBookQA, and on a medical question answering dataset, MedQA-USMLE. On all the datasets, our method achieves state-of-the-art performance. Our code is available at http://github.com/mlvlab/QAT.
translated by 谷歌翻译
预先接受的语言模型实现了最先进的导致各种自然语言处理(NLP)任务。 GPT-3表明,缩放预先训练的语言模型可以进一步利用它们的巨大潜力。最近提出了一个名为Ernie 3.0的统一框架,以预先培训大型知识增强型号,并培训了具有10亿参数的模型。 Ernie 3.0在各种NLP任务上表现出最先进的模型。为了探讨缩放的表现,我们培养了百卢比的3.0泰坦参数型号,在PaddlePaddle平台上有高达260亿参数的泰坦。此外,我们设计了一种自我监督的对抗性损失和可控语言建模损失,以使ERNIE 3.0 TITAN产生可信和可控的文本。为了减少计算开销和碳排放,我们向Ernie 3.0泰坦提出了一个在线蒸馏框架,教师模型将同时教授学生和培训。埃塞尼3.0泰坦是迄今为止最大的中国密集预训练模型。经验结果表明,Ernie 3.0泰坦在68个NLP数据集中优于最先进的模型。
translated by 谷歌翻译
本文探讨了提高语言模型的零次学习能力的简单方法。我们表明,指令调整 - 通过对说明书中所述的任务集合微调语言模型 - 大幅提升零射门上看不见任务中的表现。我们采取预训练的语言模型和指令调整它通过自然语言指令模板语言表达了60NLP任务137B参数。我们评估这种指令调整模型,我们称之为FLAN,在看不见的任务类型。FLAN显着改善其未修饰的对应的性能和超过25的20个任务,我们评估零射门175BGPT-3。FLAN甚至GPT-3通过在安利,RTE,BoolQ,AI2-ARC,OpenbookQA和StoryCloze大比分胜过几拍。消融研究显示任务和模型的规模,这个数字是指令调整取得成功的关键组成部分。
translated by 谷歌翻译
Human reading comprehension often requires reasoning of event semantic relations in narratives, represented by Event-centric Question-Answering (QA). To address event-centric QA, we propose a novel QA model with contrastive learning and invertible event transformation, call TranCLR. Our proposed model utilizes an invertible transformation matrix to project semantic vectors of events into a common event embedding space, trained with contrastive learning, and thus naturally inject event semantic knowledge into mainstream QA pipelines. The transformation matrix is fine-tuned with the annotated event relation types between events that occurred in questions and those in answers, using event-aware question vectors. Experimental results on the Event Semantic Relation Reasoning (ESTER) dataset show significant improvements in both generative and extractive settings compared to the existing strong baselines, achieving over 8.4% gain in the token-level F1 score and 3.0% gain in Exact Match (EM) score under the multi-answer setting. Qualitative analysis reveals the high quality of the generated answers by TranCLR, demonstrating the feasibility of injecting event knowledge into QA model learning. Our code and models can be found at https://github.com/LuJunru/TranCLR.
translated by 谷歌翻译