数码相机通过图像信号处理器(ISP)将传感器原始读数转换为RGB图像。诸如图像去噪和颜色恒定的计算摄影任务通常在原始域中进行,部分原因是由于固有的硬件设计,而且由于引起了由直接传感器读数导致的噪声统计的吸引力的吸引力。尽管如此,与可用RGB数据的丰富和多样性相比,原始图像的可用性有限。最近的方法已经尝试通过估计RGB对原始映射来弥合这个差距:可手工制作的基于模型的方法,这些方法通常需要手动参数微调,而端到端的学习神经网络需要大量的培训数据,有时与复杂的训练程序,并且通常缺乏解释性和参数控制。为了解决这些现有的限制,我们提出了一种基于混合模型的基于混合模型和数据驱动的ISP,其构建在规范ISP运营中,并且是学习和可解释的。我们所提出的可逆模型,能够在原始和RGB域之间双向映射,采用丰富的参数表示的端到端学习,即词典,即没有直接参数监督,另外启用简单且合理的数据增强。我们证明我们的数据生成过程的价值在原始图像重建和原始图像去噪任务下,在两者中获得最先进的性能。此外,我们表明我们的ISP可以从少数数据样本中学习有意义的映射,并且尽管只有少数或零地面标签,但基于大字典的数据增强训练的那种培训的培训模型是有竞争力的。
translated by 谷歌翻译
Conventional cameras capture image irradiance on a sensor and convert it to RGB images using an image signal processor (ISP). The images can then be used for photography or visual computing tasks in a variety of applications, such as public safety surveillance and autonomous driving. One can argue that since RAW images contain all the captured information, the conversion of RAW to RGB using an ISP is not necessary for visual computing. In this paper, we propose a novel $\rho$-Vision framework to perform high-level semantic understanding and low-level compression using RAW images without the ISP subsystem used for decades. Considering the scarcity of available RAW image datasets, we first develop an unpaired CycleR2R network based on unsupervised CycleGAN to train modular unrolled ISP and inverse ISP (invISP) models using unpaired RAW and RGB images. We can then flexibly generate simulated RAW images (simRAW) using any existing RGB image dataset and finetune different models originally trained for the RGB domain to process real-world camera RAW images. We demonstrate object detection and image compression capabilities in RAW-domain using RAW-domain YOLOv3 and RAW image compressor (RIC) on snapshots from various cameras. Quantitative results reveal that RAW-domain task inference provides better detection accuracy and compression compared to RGB-domain processing. Furthermore, the proposed \r{ho}-Vision generalizes across various camera sensors and different task-specific models. Additional advantages of the proposed $\rho$-Vision that eliminates the ISP are the potential reductions in computations and processing times.
translated by 谷歌翻译
由智能手机和中端相机捕获的照片的空间分辨率和动态范围有限,在饱和区域中未充满刺激的区域和颜色人工制品中的嘈杂响应。本文介绍了第一种方法(据我们所知),以重建高分辨率,高动态范围的颜色图像,这些颜色来自带有曝光括号的手持相机捕获的原始照相爆发。该方法使用图像形成的物理精确模型来结合迭代优化算法,用于求解相应的逆问题和学习的图像表示,以进行健壮的比对,并以前的自然图像。所提出的算法很快,与基于最新的学习图像恢复方法相比,内存需求较低,并且从合成但逼真的数据终止学习的特征。广泛的实验证明了其出色的性能,具有最多$ \ times 4 $的超分辨率因子在野外拍摄的带有手持相机的真实照片,以及对低光条件,噪音,摄像机摇动和中等物体运动的高度鲁棒性。
translated by 谷歌翻译
在本文中,我们使第一个基准测试精力阐述在低光增强中使用原始图像的优越性,并开发一种以更灵活和实用的方式利用原始图像的新颖替代路线。通过对典型图像处理管道进行充分考虑的启发,我们受到启发,开发了一种新的评估框架,分解增强模型(FEM),它将原始图像的属性分解成可测量的因素,并提供了探索原始图像属性的工具凭经验影响增强性能。经验基金基准结果表明,在元数据中记录的数据和曝光时间的线性起作用最关键的作用,这在将SRGB图像作为输入中的方法采取各种措施中提出了不同的性能增益。通过从基准测试结果中获得的洞察力,开发了一种原始曝光增强网络(REENET),这在实际应用中的实际应用中的优缺点与仅在原始图像中的原始应用中的优点和可接近之间的权衡培训阶段。 Reenet将SRGB图像投影到线性原域中,以应用相应的原始图像的约束,以减少建模培训的难度。之后,在测试阶段,我们的reenet不依赖于原始图像。实验结果不仅展示了Reenet到最先进的SRGB的方法以及原始指导和所有组件的有效性。
translated by 谷歌翻译
神经辐射字段(NERF)是一种用于高质量新颖观看综合的技术从一系列姿势输入图像。与大多数视图合成方法一样,NERF使用TONEMAPPED的低动态范围(LDR)作为输入;这些图像已经通过流畅的相机管道处理,平滑细节,剪辑突出显示,并扭曲了原始传感器数据的简单噪声分布。我们修改NERF以直接在线性原始图像直接培训,保持场景的完整动态范围。通过从生成的NERF渲染原始输出图像,我们可以执行新颖的高动态范围(HDR)视图综合任务。除了改变相机的观点外,我们还可以在事实之后操纵焦点,曝光和调度率。虽然单个原始图像显然比后处理的原始图像显着更大,但我们表明NERF对原始噪声的零平均分布非常强大。当优化许多嘈杂的原始输入(25-200)时,NERF会产生一个场景表示,如此准确的,即其呈现的新颖视图优于在同一宽基线输入图像上运行的专用单个和多像深生物丹机。因此,我们调用Rawnerf的方法可以从近黑暗中捕获的极其嘈杂的图像中重建场景。
translated by 谷歌翻译
我们提出了一个可训练的图像信号处理(ISP)框架,该框架生成智能手机捕获的原始图像的数码单反相关图像。为了解决训练图对之间的颜色错位,我们采用了颜色条件的ISP网络,并优化了每个输入原始和参考DSLR图像之间的新型参数颜色映射。在推断期间,我们通过设计具有有效的全局上下文变压器模块的颜色预测网络来预测目标颜色图像。后者有效利用全球信息来学习一致的颜色和音调映射。我们进一步提出了一个强大的掩盖对齐损失,以识别和丢弃训练期间运动估计不准确的区域。最后,我们在野外(ISPW)数据集中介绍ISP,由弱配对的RAW和DSLR SRGB图像组成。我们广泛评估我们的方法,在两个数据集上设置新的最新技术。
translated by 谷歌翻译
偏光颜色摄影在一个快照中提供视觉纹理和对象表面信息。但是,与常规颜色成像相比,定向偏振阵列的使用会导致极低的光子计数和SNR。因此,该特征实质上导致令人不愉快的嘈杂图像并破坏极化分析性能。对于传统的图像处理管道来说,这是一个挑战,因为事实是,隐式施加在渠道中的物理约束过于复杂。为了解决这个问题,我们提出了一种基于学习的方法,以同时恢复清洁信号和精确的极化信息。捕获了配对的原始短期嘈杂和长期暴露参考图像的真实世界两极化的颜色图像数据集,以支持基于学习的管道。此外,我们采用视觉变压器的开发,并提出了一个混合变压器模型,用于偏光颜色图像denoising,即PocoFormer,以更好地恢复性能。大量的实验证明了所提出的方法的有效性和影响结果的关键因素。
translated by 谷歌翻译
近年来已经提出了显示屏下的显示器,作为减少移动设备的形状因子的方式,同时最大化屏幕区域。不幸的是,将相机放在屏幕后面导致显着的图像扭曲,包括对比度,模糊,噪音,色移,散射伪像和降低光敏性的损失。在本文中,我们提出了一种图像恢复管道,其是ISP-Annostic,即它可以与任何传统ISP组合,以产生使用相同的ISP与常规相机外观匹配的最终图像。这是通过执行Raw-Raw Image Restoration的深度学习方法来实现的。为了获得具有足够对比度和场景多样性的大量实际展示摄像机培训数据,我们还开发利用HDR监视器的数据捕获方法,以及数据增强方法以产生合适的HDR内容。监视器数据补充有现实世界的数据,该数据具有较少的场景分集,但允许我们实现细节恢复而不受监视器分辨率的限制。在一起,这种方法成功地恢复了颜色和对比度以及图像细节。
translated by 谷歌翻译
我们考虑了在无法检测到细节的非常低光的环境中增强未忽视的深色图像的问题。现有方法学会将输入图像的暴露调整为预定值。但是,实际上,最佳增强曝光量从一个输入图像到另一个输入图像不等,因此,增强的图像可能包含视觉伪像,例如低对比度或黑暗区域。我们通过引入一个深度学习模型来解决此限制,该模型允许用户在运行时不断调整增强的曝光水平,以便根据其偏好优化输出。我们提供一个在极端弱光条件下在室外和室内场景中捕获的1500张原始图像的数据集,具有五个不同的曝光水平和各种相机参数,作为关键贡献。我们证明,与以前的方法相比,我们的方法可以显着提高在各种条件下在极度低光条件下捕获的图像的增强质量。
translated by 谷歌翻译
移动设备上的低光成像通常是由于不足的孔径穿过相对较小的孔径而挑战,导致信噪比较低。以前的大多数关于低光图像处理的作品仅关注单个任务,例如照明调整,颜色增强或删除噪声;或在密切依赖于从特定的摄像机模型中收集的长时间曝光图像对的关节照明调整和降解任务上,因此,这些方法在需要摄像机特定的关节增强和恢复的现实环境中不太实用且可推广。为了解决这个问题,在本文中,我们提出了一个低光图像处理框架,该框架可以执行关节照明调整,增强色彩和降解性。考虑到模型特异性数据收集的难度和捕获图像的超高定义,我们设计了两个分支:系数估计分支以及关节增强和denoising分支。系数估计分支在低分辨率空间中起作用,并预测通过双边学习增强的系数,而关节增强和去核分支在全分辨率空间中工作,并逐步执行关节增强和脱氧。与现有方法相反,我们的框架在适应另一个摄像机模型时不需要回忆大量数据,这大大减少了微调我们用于实际使用方法所需的努力。通过广泛的实验,与当前的最新方法相比,我们在现实世界中的低光成像应用中证明了它的巨大潜力。
translated by 谷歌翻译
高动态范围(HDR)成像是一种允许广泛的动态曝光范围的技术,这在图像处理,计算机图形和计算机视觉中很重要。近年来,使用深度学习(DL),HDR成像有重大进展。本研究对深层HDR成像方法的最新发展进行了综合和富有洞察力的调查和分析。在分层和结构上,将现有的深层HDR成像方法基于(1)输入曝光的数量/域,(2)学习任务数,(3)新传感器数据,(4)新的学习策略,(5)应用程序。重要的是,我们对关于其潜在和挑战的每个类别提供建设性的讨论。此外,我们审查了深度HDR成像的一些关键方面,例如数据集和评估指标。最后,我们突出了一些打开的问题,并指出了未来的研究方向。
translated by 谷歌翻译
在极低光线条件下捕获图像会对标准相机管道带来重大挑战。图像变得太黑了,太吵了,这使得传统的增强技术几乎不可能申请。最近,基于学习的方法已经为此任务显示了非常有希望的结果,因为它们具有更大的表现力能力来允许提高质量。这些研究中的激励,在本文中,我们的目标是利用爆破摄影来提高性能,并从极端暗的原始图像获得更加锐利和更准确的RGB图像。我们提出的框架的骨干是一种新颖的粗良好网络架构,逐步产生高质量的输出。粗略网络预测了低分辨率,去噪的原始图像,然后将其馈送到精细网络以恢复微尺的细节和逼真的纹理。为了进一步降低噪声水平并提高颜色精度,我们将该网络扩展到置换不变结构,使得它作为输入突发为低光图像,并在特征级别地合并来自多个图像的信息。我们的实验表明,我们的方法通过生产更详细和相当更高的质量的图像来引起比最先进的方法更令人愉悦的结果。
translated by 谷歌翻译
用于计算机视觉任务的现有神经网络容易受到对抗攻击的影响:向输入图像添加不可察觉的扰动可以欺骗这些方法,在没有扰动的情况下正确预测的图像对错误预测。各种防御方法已经提出了图像到图像映射方法,其中包括训练过程中的这些扰动或在预处理的去噪步骤中除去它们。在这样做时,现有方法通常忽略当今数据集中的自然RGB图像未被捕获,而实际上,从捕获中的各种劣化的原始滤色器阵列捕获中恢复。在这项工作中,我们利用此原始数据分布作为对抗防御之前的经验。具体而言,我们提出了一种模型 - 不可原谅的对抗性防御方法,其将输入的RGB图像映射到拜耳原始空间,并使用学习的摄像机图像信号处理(ISP)管道回输出RGB以消除潜在的对抗模式。所提出的方法充当了货架上的预处理模块,与模型特异性的对抗性培训方法不同,不需要培训对抗性图像。因此,该方法推广到未经额外再培训的未经看不见的任务。不同视觉任务的大型数据集(例如,Imagenet,CoCo)的实验(例如,分类,语义分割,对象检测)验证该方法显着优于跨任务域的现有方法。
translated by 谷歌翻译
The ability to record high-fidelity videos at high acquisition rates is central to the study of fast moving phenomena. The difficulty of imaging fast moving scenes lies in a trade-off between motion blur and underexposure noise: On the one hand, recordings with long exposure times suffer from motion blur effects caused by movements in the recorded scene. On the other hand, the amount of light reaching camera photosensors decreases with exposure times so that short-exposure recordings suffer from underexposure noise. In this paper, we propose to address this trade-off by treating the problem of high-speed imaging as an underexposed image denoising problem. We combine recent advances on underexposed image denoising using deep learning and adapt these methods to the specificity of the high-speed imaging problem. Leveraging large external datasets with a sensor-specific noise model, our method is able to speedup the acquisition rate of a High-Speed Camera over one order of magnitude while maintaining similar image quality.
translated by 谷歌翻译
a) Camera output with ISO 8,000 (b) Camera output with ISO 409,600 (c) Our result from the raw data of (a) Figure 1. Extreme low-light imaging with a convolutional network. Dark indoor environment. The illuminance at the camera is < 0.1 lux. The Sony α7S II sensor is exposed for 1/30 second. (a) Image produced by the camera with ISO 8,000. (b) Image produced by the camera with ISO 409,600. The image suffers from noise and color bias. (c) Image produced by our convolutional network applied to the raw sensor data from (a).
translated by 谷歌翻译
The last decade has seen an astronomical shift from imaging with DSLR and point-and-shoot cameras to imaging with smartphone cameras. Due to the small aperture and sensor size, smartphone images have notably more noise than their DSLR counterparts. While denoising for smartphone images is an active research area, the research community currently lacks a denoising image dataset representative of real noisy images from smartphone cameras with high-quality ground truth. We address this issue in this paper with the following contributions. We propose a systematic procedure for estimating ground truth for noisy images that can be used to benchmark denoising performance for smartphone cameras. Using this procedure, we have captured a dataset -the Smartphone Image Denoising Dataset (SIDD) -of ~30,000 noisy images from 10 scenes under different lighting conditions using five representative smartphone cameras and generated their ground truth images. We used this dataset to benchmark a number of denoising algorithms. We show that CNN-based methods perform better when trained on our high-quality dataset than when trained using alternative strategies, such as low-ISO images used as a proxy for ground truth data.
translated by 谷歌翻译
用商品传感器捕获的深度图通常具有低质量和分辨率;这些地图需要增强以在许多应用中使用。深度图超分辨率的最新数据驱动方法依赖于同一场景的低分辨率和高分辨率深度图的注册对。采集现实世界配对数据需要专门的设置。另一个替代方法是通过亚采样,添加噪声和其他人工降解方法从高分辨率地图中生成低分辨率地图,并不能完全捕获现实世界中低分辨率图像的特征。结果,对这种人造配对数据训练的监督学习方法可能在现实世界中的低分辨率输入上表现不佳。我们考虑了一种基于从未配对数据学习的深度超分辨率的方法。尽管已经提出了许多用于未配对图像到图像翻译的技术,但大多数技术无法使用深度图提供有效的孔填充或重建精确表面。我们提出了一种未配对的学习方法,用于深度超分辨率,该方法基于可学习的降解模型,增强成分和表面正常估计作为特征,以产生更准确的深度图。我们为未配对的深度SR提出了一个基准测试,并证明我们的方法的表现优于现有的未配对方法,并与配对相当。
translated by 谷歌翻译
传统上,本征成像或内在图像分解被描述为将图像分解为两层:反射率,材料的反射率;和一个阴影,由光和几何之间的相互作用产生。近年来,深入学习技术已广泛应用,以提高这些分离的准确性。在本调查中,我们概述了那些在知名内在图像数据集和文献中使用的相关度量的结果,讨论了预测所需的内在图像分解的适用性。虽然Lambertian的假设仍然是许多方法的基础,但我们表明,对图像形成过程更复杂的物理原理组件的潜力越来越意识到,这是光学准确的材料模型和几何形状,更完整的逆轻型运输估计。考虑使用的前瞻和模型以及驾驶分解过程的学习架构和方法,我们将这些方法分类为分解的类型。考虑到最近神经,逆和可微分的渲染技术的进步,我们还提供了关于未来研究方向的见解。
translated by 谷歌翻译
在本文中,我们提出了一种添加在生成的对抗网络(GaN)中不可替代的约束的方法(GaN)的任意大小原始拜耳图像生成。理论上,通过使用GaN培训中的转换数据来说,它能够改善原始数据分布的学习,由于在可逆性和可微分的变换下的两个分布之间的Jensen-Shannon(JS)发散。受益于所提出的方法,可以通过将变换配置为Demosaicing来生成原始拜耳图案图像。结果表明,通过添加另一个变换,所提出的方法能够合成具有任意尺寸的高质量未加工拜耳图像。实验结果表明,所提出的方法生成的图像优于FR \'Echet Inception距离(FID)得分中的现有方法,峰值信号到噪声比(PSNR),以及平均结构相似度(MSSIM),训练过程更多稳定的。为了提出作者的最佳知识,未加工拜耳域中没有开源,大型图像数据集,这对于研究工程至关重要,旨在探索计算机视觉任务的图像信号处理(ISP)管道设计。将现有的常用彩色图像数据集转换为相应的博客版本,所提出的方法可以是对原始图像数据集问题的有希望的解决方案。我们还在实验中显示,通过使用合成的原始拜耳图像训练对象检测框架,可以以端到端的方式(从原始图像到视觉任务)使用,具有可忽略的性能下降。
translated by 谷歌翻译
由少量镜头组成的全景环形镜头(PAL)在全景周围具有巨大潜力,该镜头围绕着移动和可穿戴设备的传感任务,因为其尺寸很小,并且视野很大(FOV)。然而,由于缺乏畸变校正的镜头,小体积PAL的图像质量仅限于光学极限。在本文中,我们提出了一个环形计算成像(ACI)框架,以打破轻质PAL设计的光学限制。为了促进基于学习的图像恢复,我们引入了基于波浪的模拟管道,用于全景成像,并通过多个数据分布来应对合成间隙。提出的管道可以轻松地适应具有设计参数的任何PAL,并且适用于宽松的设计。此外,我们考虑了全景成像和物理知识学习的物理先验,我们设计了物理知情的图像恢复网络(PI2RNET)。在数据集级别,我们创建了Divpano数据集,其广泛的实验表明,我们提出的网络在空间变化的降级下在全景图像恢复中设置了新的最新技术。此外,对只有3个球形镜头的简单PAL上提议的ACI的评估揭示了高质量全景成像与紧凑设计之间的微妙平衡。据我们所知,我们是第一个探索PAL中计算成像(CI)的人。代码和数据集将在https://github.com/zju-jiangqi/aci-pi2rnet上公开提供。
translated by 谷歌翻译