为视觉细分标记图像是一项耗时的任务,尤其是在必须由专业专家注释者(例如土木工程)提供标签的应用领域中。在本文中,我们建议使用归因方法来利用专家注释者和在缺陷细分的情况下进行注释的专家注释之间的有价值的相互作用,以视觉检查民用基础架构。具体而言,对分类器进行了训练,可以检测缺陷,并与基于归因的方法和对抗性攀爬相结合,以生成和完善与分类输出相对应的分割掩码。这些用于在辅助标签框架中使用,在该框架中,注释者可以通过决定接受,拒绝或修改它们作为建议分割掩码与它们进行交互,并将交互记录为弱标签以进一步完善分类器。与对缺陷的手动注释相比,我们所提出的方法应用于自动视觉检查桥梁产生的现实数据集。
translated by 谷歌翻译
使用深度学习模型从组织学数据中诊断癌症提出了一些挑战。这些图像中关注区域(ROI)的癌症分级和定位通常依赖于图像和像素级标签,后者需要昂贵的注释过程。深度弱监督的对象定位(WSOL)方法为深度学习模型的低成本培训提供了不同的策略。仅使用图像级注释,可以训练这些方法以对图像进行分类,并为ROI定位进行分类类激活图(CAM)。本文综述了WSOL的​​最先进的DL方法。我们提出了一种分类法,根据模型中的信息流,将这些方法分为自下而上和自上而下的方法。尽管后者的进展有限,但最近的自下而上方法目前通过深层WSOL方法推动了很多进展。早期作品的重点是设计不同的空间合并功能。但是,这些方法达到了有限的定位准确性,并揭示了一个主要限制 - 凸轮的不足激活导致了高假阴性定位。随后的工作旨在减轻此问题并恢复完整的对象。评估和比较了两个具有挑战性的组织学数据集的分类和本地化准确性,对我们的分类学方法进行了评估和比较。总体而言,结果表明定位性能差,特别是对于最初设计用于处理自然图像的通用方法。旨在解决组织学数据挑战的方法产生了良好的结果。但是,所有方法都遭受高假阳性/阴性定位的影响。在组织学中应用深WSOL方法的应用是四个关键的挑战 - 凸轮的激活下/过度激活,对阈值的敏感性和模型选择。
translated by 谷歌翻译
从众包标签或公开的数据创建的大规模数据集已经至关重要,为大规模学习算法提供培训数据。虽然这些数据集更容易获取,但数据经常嘈杂和不可靠,这是对弱监督学习技术的激励研究。在本文中,我们提出了原始想法,帮助我们在变更检测的背景下利用此类数据集。首先,我们提出了引导的各向异性扩散(GAD)算法,其使用输入图像改善语义分割结果作为执行边缘保留滤波的引导件。然后,我们展示了它在改变检测中量身定制的两个弱监督的学习策略中的潜力。第一策略是一种迭代学习方法,它将模型优化和数据清理使用GAD从开放矢量数据生成的大规模改变检测数据集中提取有用信息。第二个在新的空间注意层内包含GAD,其增加训练训练的弱监管网络的准确性,以从图像级标签执行像素级预测。在4个不同的公共数据集上展示了关于最先进的最先进的改进。
translated by 谷歌翻译
像素级裂纹分割由于对建筑物和道路检查的高影响而进行了广泛的研究。最近的研究已经取得了重大改善的准确性,但忽略了注释成本瓶颈。为了解决这个问题,我们将裂纹细分问题重新制定为一个弱监督的问题,并提出了一个两分的推理框架和一个不需要其他数据的注释细化模块,以抵消注释质量的损失。实验结果证实了该方法在裂纹分割以及其他目标域中的有效性。
translated by 谷歌翻译
弱监督的实例分割(WSIS)被认为是比虚弱的语义细分(WSSS)更具挑战性的任务。与WSSS相比,WSIS需要实例的本地化,这很难从图像级标签中提取。为了解决问题,大多数WSIS方法都使用实例或对象级标签需要预先训练的现成提案技术,偏离完全图像级监督设置的基本定义。在本文中,我们提出了一种新的方法,包括两种创新组件。首先,我们提出了一种语义知识转移,通过将WSSS的知识转移到WSIS来获取伪实例标签,同时消除了对现货附加提案的需求。其次,我们提出了一种自我细化方法,可以在自我监督方案中优化伪实例标签,并以在线方式使用精制标签进行培训。在这里,我们发现伪实例标签中缺失的实例被分类为背景类的缺失实例发生了错误的现象。这种语义漂移发生了背景和实例在训练中的混淆,因此降低了分割性能。我们将此问题术语作为语义漂移问题,并表明我们所提出的自我细化方法消除了语义漂移问题。对Pascal VOC 2012和Coco的广泛实验证明了我们的方法的有效性,并且在没有现成的提案技术的情况下实现了相当大的表现。代码即将推出。
translated by 谷歌翻译
The semantic image segmentation task presents a trade-off between test time accuracy and training-time annotation cost. Detailed per-pixel annotations enable training accurate models but are very timeconsuming to obtain; image-level class labels are an order of magnitude cheaper but result in less accurate models. We take a natural step from image-level annotation towards stronger supervision: we ask annotators to point to an object if one exists. We incorporate this point supervision along with a novel objectness potential in the training loss function of a CNN model. Experimental results on the PASCAL VOC 2012 benchmark reveal that the combined effect of point-level supervision and objectness potential yields an improvement of 12.9% mIOU over image-level supervision. Further, we demonstrate that models trained with pointlevel supervision are more accurate than models trained with image-level, squiggle-level or full supervision given a fixed annotation budget.
translated by 谷歌翻译
半弱监督和监督的学习最近在对象检测文献中引起了很大的关注,因为它们可以减轻成功训练深度学习模型所需的注释成本。半监督学习的最先进方法依赖于使用多阶段过程训练的学生老师模型,并大量数据增强。为弱监督的设置开发了自定义网络,因此很难适应不同的检测器。在本文中,引入了一种弱半监督的训练方法,以减少这些训练挑战,但通过仅利用一小部分全标记的图像,并在弱标记图像中提供信息来实现最先进的性能。特别是,我们基于通用抽样的学习策略以在线方式产生伪基真实(GT)边界框注释,消除了对多阶段培训的需求和学生教师网络配置。这些伪GT框是根据通过得分传播过程累积的对象建议的分类得分从弱标记的图像中采样的。 PASCAL VOC数据集的经验结果表明,使用VOC 2007作为完全标记的拟议方法可提高性能5.0%,而VOC 2012作为弱标记数据。同样,有了5-10%的完全注释的图像,我们观察到MAP中的10%以上的改善,表明对图像级注释的适度投资可以大大改善检测性能。
translated by 谷歌翻译
仅使用诸如图像类标签的全局注释,弱监督学习方法允许CNN分类器共同分类图像,并产生与预测类相关的感兴趣区域。然而,在像素水平的任何引导下,这种方法可以产生不准确的区域。已知该问题与组织学图像更具挑战,而不是与天然自然的图像,因为物体不太突出,结构具有更多变化,并且前景和背景区域具有更强的相似之处。因此,用于CNNS的视觉解释的计算机视觉文献中的方法可能无法直接适用。在这项工作中,我们提出了一种基于复合损耗功能的简单而有效的方法,可利用完全消极样本的信息。我们的新损失函数包含两个补充项:第一次利用CNN分类器收集的积极证据,而第二个利用来自CNN分类器的积极证据,而第二个互联网将利用来自训练数据集的完全消极样本。特别是,我们用解码器装备预先训练的分类器,该解码器允许精制感兴趣的区域。利用相同的分类器来收集像素电平的正面和负证据,以培训解码器。这使得能够利用自然地发生在数据中的完全消极样本,而没有任何额外的监督信号,并且仅使用图像类作为监督。与几种相关方法相比,在冒号癌的公共基准GLAS和使用三种不同的骨架的CONELYON16基于乳腺癌的CAMELYON16基准测试,我们展示了我们方法引入的大量改进。我们的结果表明了使用负数和积极证据的好处,即,从分类器获得的效益以及在数据集中自然可用的那个。我们对这两种术语进行了消融研究。我们的代码公开提供。
translated by 谷歌翻译
在弱监督的本地化设置中,监督作为图像级标签。我们建议使用图像分类器$ F $,并培训发电网络$ G $,给定输入图像,指示图像内对象位置的每个像素权重映射。通过最大限度地减少原始图像上的分类器F $ F $的输出之间的差异来培训网络$ G $培训。该方案需要一个正常化术语,确保$ G $不提供统一的重量,以及提前停止标准,以防止超过段图像。我们的结果表明,该方法在充满挑战的细粒度分类数据集中的相当余量以及通用图像识别数据集中优于现有的本地化方法。另外,在细粒度分类数据集中的弱监督分割中,所获得的权重映射也是最新的。
translated by 谷歌翻译
在病理样本的全坡度图像(WSI)中注释癌区域在临床诊断,生物医学研究和机器学习算法开发中起着至关重要的作用。但是,产生详尽而准确的注释是劳动密集型,具有挑战性和昂贵的。仅绘制粗略和近似注释是一项容易得多的任务,成本较小,并且可以减轻病理学家的工作量。在本文中,我们研究了在数字病理学中完善这些近似注释以获得更准确的问题的问题。以前的一些作品探索了从这些不准确的注释中获得机器学习模型,但是很少有人解决改进问题,在这些问题中,应该明确识别和纠正错误标签的区域,并且所有这些都需要大量的培训样本(通常很大) 。我们提出了一种名为标签清洁多个实例学习(LC-MIL)标签的方法,可在不需要外部培训数据的情况下对单个WSI进行粗略注释。从WSI裁剪的带有不准确标签的贴片在多个实例学习框架内共同处理,从而减轻了它们对预测模型的影响并完善分割。我们对具有乳腺癌淋巴结转移,肝癌和结直肠癌样品的异质WSI进行的实验表明,LC-MIL显着完善了粗糙的注释,即使从单个幻灯片中学习,LC-MIL也优于最先进的替代方案。此外,我们证明了拟议方法如何有效地完善和改进病理学家绘制的真实注释。所有这些结果表明,LC-MIL是一种有前途的,轻巧的工具,可提供从粗糙注释的病理组中提供细粒的注释。
translated by 谷歌翻译
我们提出了一个令人尴尬的简单点注释方案,以收集弱监督,例如分割。除了边界框外,我们还收集了在每个边界框内均匀采样的一组点的二进制标签。我们表明,为完整的掩模监督开发的现有实例细分模型可以通过我们的方案收集基于点的监督而无缝培训。值得注意的是,接受了可可,Pascal VOC,CityScapes和LVI的面具R-CNN,每个物体只有10个带注释的随机点可实现94% - 占其完全监督的性能的98%,为弱化的实例细分定下了强大的基线。新点注释方案的速度比注释完整的对象掩码快5倍,使高质量实例分割在实践中更容易访问。受基于点的注释形式的启发,我们提出了对Pointrend实例分割模块的修改。对于每个对象,称为隐式pointrend的新体系结构生成一个函数的参数,该函数可以使最终的点级掩码预测。隐式Pointrend更加简单,并使用单点级掩蔽丢失。我们的实验表明,新模块更适合基于点的监督。
translated by 谷歌翻译
图像和视频中的消防本地化是自治系统对抗火事故的重要一步。基于深神经网络的最先进的图像分割方法需要大量的像素注释样本以以完全监督的方式训练卷积神经网络(CNNS)。在本文中,我们考虑了图像中的火灾的弱监管,其中仅使用图像标签来训练网络。我们示出在火灾分割的情况下,这是二进制分割问题,分类中的中层中的特征的平均值可以比传统的类激活映射(CAM)方法更好。我们还建议通过在上次卷积层的特征上添加旋转等值正则化损耗来进一步提高分割精度。我们的结果表明,对弱势监督的火灾细分的基线方法显着改善。
translated by 谷歌翻译
必须在密集的注释图像上培训最先进的实例分段方法。虽然一般而言,这一要求对于生物医学图像尤其令人生畏,其中域专业知识通常需要注释,没有大的公共数据收集可用于预培训。我们建议通过基于非空间嵌入的非空间嵌入的联盟分割方法来解决密集的注释瓶颈,该方法利用所学习的嵌入空间的结构以可分散的方式提取单个实例。然后可以将分割损耗直接应用于实例,整体管道可以以完全或弱监督的方式培训,包括积极解贴的监管的具有挑战性的情况,其中为未标记的部分引入了一种新的自我监督的一致性损失训练数据。我们在不同显微镜模型以及城市景观和CVPPP实例分段基准中评估了对2D和3D分段问题的提出的方法,在后者上实现最先进的结果。该代码可用于:https://github.com/kreshuklab/spoco
translated by 谷歌翻译
弱监督的对象本地化(WSOL)在过去几年中获得了普及,以便培训具有图像级标签的本地化模型。由于Soliminal WSOL类激活映射(CAM),该领域的重点是如何扩展注意区域更广泛地覆盖物体并更好地本地化。但是,这些策略依赖于验证超参数和模型选择的完全本地化监督,这是原则上禁止WSOL设置。在本文中,我们认为WSOL任务仅用图像级标签均不含糊,并提出了一种新的评估协议,其中全面监督仅限于仅与测试集没有重叠的小型举出的设置。我们观察到,根据我们的协议,五种最新的WSOL方法没有对CAM基线进行重大改进。此外,我们报告说,现有的WSOL方法尚未达到几次学习基准,其中验证时间的全面监督用于模型培训。根据我们的调查结果,我们讨论了WSOL的​​一些未来方向。
translated by 谷歌翻译
This paper presents the first attempt to learn semantic boundary detection using image-level class labels as supervision. Our method starts by estimating coarse areas of object classes through attentions drawn by an image classification network. Since boundaries will locate somewhere between such areas of different classes, our task is formulated as a multiple instance learning (MIL) problem, where pixels on a line segment connecting areas of two different classes are regarded as a bag of boundary candidates. Moreover, we design a new neural network architecture that can learn to estimate semantic boundaries reliably even with uncertain supervision given by the MIL strategy. Our network is used to generate pseudo semantic boundary labels of training images, which are in turn used to train fully supervised models. The final model trained with our pseudo labels achieves an outstanding performance on the SBD dataset, where it is as competitive as some of previous arts trained with stronger supervision.
translated by 谷歌翻译
The United States coastline spans 95,471 miles; a distance that cannot be effectively patrolled or secured by manual human effort alone. Unmanned Aerial Vehicles (UAVs) equipped with infrared cameras and deep-learning based algorithms represent a more efficient alternative for identifying and segmenting objects of interest - namely, ships. However, standard approaches to training these algorithms require large-scale datasets of densely labeled infrared maritime images. Such datasets are not publicly available and manually annotating every pixel in a large-scale dataset would have an extreme labor cost. In this work we demonstrate that, in the context of segmenting ships in infrared imagery, weakly-supervising an algorithm with sparsely labeled data can drastically reduce data labeling costs with minimal impact on system performance. We apply weakly-supervised learning to an unlabeled dataset of 7055 infrared images sourced from the Naval Air Warfare Center Aircraft Division (NAWCAD). We find that by sparsely labeling only 32 points per image, weakly-supervised segmentation models can still effectively detect and segment ships, with a Jaccard score of up to 0.756.
translated by 谷歌翻译
现有的突出实例检测(SID)方法通常从像素级注释数据集中学习。在本文中,我们向SID问题提出了第一个弱监督的方法。虽然在一般显着性检测中考虑了弱监管,但它主要基于使用类标签进行对象本地化。然而,仅使用类标签来学习实例知识的显着性信息是不普遍的,因为标签可能不容易地分离具有高语义亲和力的显着实例。由于子化信息提供了对突出项的数量的即时判断,因此自然地与检测突出实例相关,并且可以帮助分离相同实例的不同部分的同一类别的单独实例。灵感来自这一观察,我们建议使用课程和镇展标签作为SID问题的弱监督。我们提出了一种具有三个分支的新型弱监管网络:显着性检测分支利用类一致性信息来定位候选物体;边界检测分支利用类差异信息来解除对象边界;和Firedroid检测分支,使用子化信息来检测SALICE实例质心。然后融合该互补信息以产生突出的实例图。为方便学习过程,我们进一步提出了一种渐进的培训方案,以减少标签噪声和模型中学到的相应噪声,通过往复式突出实例预测和模型刷新模型。我们广泛的评估表明,该方法对精心设计的基线方法进行了有利地竞争,这些方法适应了相关任务。
translated by 谷歌翻译
大多数现有的语义分割方法都以图像级类标签作为监督,高度依赖于从标准分类网络生成的初始类激活图(CAM)。在本文中,提出了一种新颖的“渐进贴片学习”方法,以改善分类的局部细节提取,从而更好地覆盖整个对象的凸轮,而不仅仅是在常规分类模型中获得的CAM中的最歧视区域。 “补丁学习”将特征映射破坏成贴片,并在最终聚合之前并行独立处理每个本地贴片。这样的机制强迫网络从分散的歧视性本地部分中找到弱信息,从而提高了本地细节的敏感性。 “渐进的补丁学习”进一步将特征破坏和补丁学习扩展到多层粒度。与多阶段优化策略合作,这种“渐进的补丁学习”机制隐式地为模型提供了跨不同位置粒状性的特征提取能力。作为隐式多粒性渐进式融合方法的替代方案,我们还提出了一种明确的方法,以同时将单个模型中不同粒度的特征融合,从而进一步增强了完整对象覆盖的凸轮质量。我们提出的方法在Pascal VOC 2012数据集上取得了出色的性能,例如,测试集中有69.6 $%miou),它超过了大多数现有的弱监督语义细分方法。代码将在此处公开提供,https://github.com/tyroneli/ppl_wsss。
translated by 谷歌翻译
生成精确的类感知的伪基真实,也就是类激活图(CAM),对于弱监督的语义分割至关重要。原始CAM方法通常会产生不完整和不准确的定位图。为了解决这个问题,本文提出了基于可变形卷积中的偏移学习的扩展和收缩方案,以依次改善两个各个阶段中定位对象的回忆和精度。在扩展阶段,在可变形卷积层中的偏移学习分支,称为“扩展采样器”,寻求采样越来越小的判别对象区域,这是由逆监督信号驱动的,从而最大程度地提高了图像级分类损失。然后在收缩阶段逐渐将位置更完整的物体逐渐缩小到最终对象区域。在收缩阶段,引入了另一个可变形卷积层的偏移学习分支,称为“收缩采样器”,以排除在扩展阶段参加的假积极背景区域,以提高定位图的精度。我们在Pascal VOC 2012和MS Coco 2014上进行了各种实验,以很好地证明了我们方法比其他最先进的方法对弱监督语义分割的优越性。代码将在此处公开提供,https://github.com/tyroneli/esol_wsss。
translated by 谷歌翻译
美国和全球的两个主要死亡原因是中风和心肌梗塞。两者的根本原因是由破裂或侵蚀的不稳定的动脉粥样硬化斑块释放的,这些斑块阻塞了心脏(心肌梗塞)或大脑(中风)的血管。临床研究表明,在斑块破裂或侵蚀事件中,斑块组成比病变大小更重要。为了确定斑块组成,计算了3D心血管免疫荧光图像的各种细胞类型的斑块病变。但是,手动计算这些细胞是昂贵的,耗时的,并且容易发生人为错误。手动计数的这些挑战激发了对自动化方法进行定位和计算图像中细胞的需求。这项研究的目的是开发一种自动方法,以最少的注释工作在3D免疫荧光图像中准确检测和计数细胞。在这项研究中,我们使用弱监督的学习方法使用点注释来训练悬停网络分割模型,以检测荧光图像中的核。使用点注释的优点是,与像素的注释相比,它们需要更少的精力。为了使用点注释训练悬停的网络模型,我们采用了一种普遍使用的群集标记方法,将点注释转换为精确的细胞核二进制掩模。传统上,这些方法从点注释产生了二进制面具,使该物体周围的区域未标记(通常在模型训练中被忽略)。但是,这些区域可能包含重要信息,有助于确定细胞之间的边界。因此,我们在这些区域使用了熵最小化的损失函数,以鼓励模型在未标记区域上输出更自信的预测。我们的比较研究表明,使用我们的弱训练的悬停网络模型...
translated by 谷歌翻译