视频语义细分(VSS)的本质是如何利用时间信息进行预测。先前的努力主要致力于开发新技术来计算诸如光学流和注意力之类的跨框架亲和力。取而代之的是,本文通过跨框架亲和力之间的采矿关系从不同的角度做出了贡献,可以在其上实现更好的时间信息聚合。我们在两个方面探索亲和力之间的关系:单尺度的内在相关性和多尺度关系。受传统功能处理的启发,我们提出了单尺度亲和力改进(SAR)和多尺度亲和力聚合(MAA)。为了使执行MAA可行,我们提出了一种选择性令牌掩蔽(STM)策略,以在计算亲和力时为不同量表选择一致参考令牌的子集,这也提高了我们方法的效率。最后,采用了SAR和MAA加强的跨框架亲和力,以自适应地汇总时间信息。我们的实验表明,所提出的方法对最新的VSS方法表现出色。该代码可在https://github.com/guoleisun/vss-mrcfa上公开获取
translated by 谷歌翻译
共同出现的视觉模式使上下文聚集成为语义分割的重要范式。现有的研究重点是建模图像中的上下文,同时忽略图像以下相应类别的有价值的语义。为此,我们提出了一个新颖的软采矿上下文信息,超出了名为McIbi ++的图像范式,以进一步提高像素级表示。具体来说,我们首先设置了动态更新的内存模块,以存储各种类别的数据集级别的分布信息,然后利用信息在网络转发过程中产生数据集级别类别表示。之后,我们为每个像素表示形式生成一个类概率分布,并以类概率分布作为权重进行数据集级上下文聚合。最后,使用汇总的数据集级别和传统的图像级上下文信息来增强原始像素表示。此外,在推论阶段,我们还设计了一种粗到最新的迭代推理策略,以进一步提高分割结果。 MCIBI ++可以轻松地纳入现有的分割框架中,并带来一致的性能改进。此外,MCIBI ++可以扩展到视频语义分割框架中,比基线进行了大量改进。配备MCIBI ++,我们在七个具有挑战性的图像或视频语义分段基准测试中实现了最先进的性能。
translated by 谷歌翻译
在本文中,我们专注于探索有效的方法,以更快,准确和域的不可知性语义分割。受到相邻视频帧之间运动对齐的光流的启发,我们提出了一个流对齐模块(FAM),以了解相邻级别的特征映射之间的\ textit {语义流},并将高级特征广播到高分辨率特征有效地,有效地有效。 。此外,将我们的FAM与共同特征的金字塔结构集成在一起,甚至在轻量重量骨干网络(例如Resnet-18和DFNET)上也表现出优于其他实时方法的性能。然后,为了进一步加快推理过程,我们还提出了一个新型的封闭式双流对齐模块,以直接对齐高分辨率特征图和低分辨率特征图,在该图中我们将改进版本网络称为SFNET-LITE。广泛的实验是在几个具有挑战性的数据集上进行的,结果显示了SFNET和SFNET-LITE的有效性。特别是,建议的SFNET-LITE系列在使用RESNET-18主链和78.8 MIOU以120 fps运行的情况下,使用RTX-3090上的STDC主链在120 fps运行时,在60 fps运行时达到80.1 miou。此外,我们将四个具有挑战性的驾驶数据集(即CityScapes,Mapillary,IDD和BDD)统一到一个大数据集中,我们将其命名为Unified Drive细分(UDS)数据集。它包含不同的域和样式信息。我们基准了UDS上的几项代表性作品。 SFNET和SFNET-LITE仍然可以在UDS上取得最佳的速度和准确性权衡,这在如此新的挑战性环境中是强大的基准。所有代码和模型均可在https://github.com/lxtgh/sfsegnets上公开获得。
translated by 谷歌翻译
Detection Transformer (DETR) and Deformable DETR have been proposed to eliminate the need for many hand-designed components in object detection while demonstrating good performance as previous complex hand-crafted detectors. However, their performance on Video Object Detection (VOD) has not been well explored. In this paper, we present TransVOD, the first end-to-end video object detection system based on spatial-temporal Transformer architectures. The first goal of this paper is to streamline the pipeline of VOD, effectively removing the need for many hand-crafted components for feature aggregation, e.g., optical flow model, relation networks. Besides, benefited from the object query design in DETR, our method does not need complicated post-processing methods such as Seq-NMS. In particular, we present a temporal Transformer to aggregate both the spatial object queries and the feature memories of each frame. Our temporal transformer consists of two components: Temporal Query Encoder (TQE) to fuse object queries, and Temporal Deformable Transformer Decoder (TDTD) to obtain current frame detection results. These designs boost the strong baseline deformable DETR by a significant margin (2 %-4 % mAP) on the ImageNet VID dataset. TransVOD yields comparable performances on the benchmark of ImageNet VID. Then, we present two improved versions of TransVOD including TransVOD++ and TransVOD Lite. The former fuses object-level information into object query via dynamic convolution while the latter models the entire video clips as the output to speed up the inference time. We give detailed analysis of all three models in the experiment part. In particular, our proposed TransVOD++ sets a new state-of-the-art record in terms of accuracy on ImageNet VID with 90.0 % mAP. Our proposed TransVOD Lite also achieves the best speed and accuracy trade-off with 83.7 % mAP while running at around 30 FPS on a single V100 GPU device. Code and models will be available for further research.
translated by 谷歌翻译
Contextual information is vital in visual understanding problems, such as semantic segmentation and object detection. We propose a Criss-Cross Network (CCNet) for obtaining full-image contextual information in a very effective and efficient way. Concretely, for each pixel, a novel criss-cross attention module harvests the contextual information of all the pixels on its criss-cross path. By taking a further recurrent operation, each pixel can finally capture the full-image dependencies. Besides, a category consistent loss is proposed to enforce the criss-cross attention module to produce more discriminative features. Overall, CCNet is with the following merits: 1) GPU memory friendly. Compared with the non-local block, the proposed recurrent criss-cross attention module requires 11× less GPU memory usage. 2) High computational efficiency. The recurrent criss-cross attention significantly reduces FLOPs by about 85% of the non-local block. 3) The state-of-the-art performance. We conduct extensive experiments on semantic segmentation benchmarks including Cityscapes, ADE20K, human parsing benchmark LIP, instance segmentation benchmark COCO, video segmentation benchmark CamVid. In particular, our CCNet achieves the mIoU scores of 81.9%, 45.76% and 55.47% on the Cityscapes test set, the ADE20K validation set and the LIP validation set respectively, which are the new state-of-the-art results. The source codes are available at https://github.com/speedinghzl/CCNet.
translated by 谷歌翻译
光流是一种易于构思和珍贵的提示,用于推进无监督的视频对象细分(UVOS)。以前的大多数方法直接提取并融合了在UVOS设置中分割目标对象的运动和外观特征。但是,光流本质上是连续帧之间所有像素的瞬时速度,因此使运动特征与相应帧之间的主要对象不太对齐。为了解决上述挑战,我们为外观和运动特征对齐方式提出了一个简洁,实用和有效的体系结构,称为层次特征对齐网络(HFAN)。具体而言,HFAN中的关键优点是顺序特征对齐(FAM)模块和特征适应(FAT)模块,这些模块被利用用于处理外观和运动特征。 FAM能够分别将外观和运动特征与主要对象语义表示分别对齐。此外,脂肪是针对外观和运动特征的自适应融合而显式设计的,以实现跨模式特征之间的理想权衡。广泛的实验证明了拟议的HFAN的有效性,该实验在Davis-16上达到了新的最新性能,达到88.7 $ \ MATHCAL {J} \&\ MATHCAL {F} $,即相对改进,即相对改进比最佳发布结果比3.5%。
translated by 谷歌翻译
像窗户,瓶子和镜子等玻璃状物体在现实世界中存在广泛存在。感应这些对象有许多应用,包括机器人导航和抓握。然而,由于玻璃样物体背后的任意场景,这项任务非常具有挑战性。本文旨在通过增强的边界学习解决玻璃状物体分割问题。特别是,我们首先提出了一种新的精致差分模块,其输出更精细的边界线索。然后,我们介绍了一个边缘感知点的图形卷积网络模块,以沿边界模拟全局形状。我们使用这两个模块来设计解码器,该解码器产生准确和干净的分段结果,尤其是在对象轮廓上。两个模块都是重量轻且有效的:它们可以嵌入到各种分段模型中。在最近的三个玻璃状物体分割数据集上进行了广泛的实验,包括Trans10K,MSD和GDD,我们的方法建立了新的最先进的结果。我们还说明了我们在三个通用分段数据集中的方法的强大泛化属性,包括城市景观,BDD和Coco Sift。代码和模型可用于\ url {https:/github.com/hehao13/ebrnet}。
translated by 谷歌翻译
Deep convolutional neutral networks have achieved great success on image recognition tasks. Yet, it is nontrivial to transfer the state-of-the-art image recognition networks to videos as per-frame evaluation is too slow and unaffordable. We present deep feature flow, a fast and accurate framework for video recognition. It runs the expensive convolutional sub-network only on sparse key frames and propagates their deep feature maps to other frames via a flow field. It achieves significant speedup as flow computation is relatively fast. The end-to-end training of the whole architecture significantly boosts the recognition accuracy. Deep feature flow is flexible and general. It is validated on two video datasets on object detection and semantic segmentation. It significantly advances the practice of video recognition tasks. Code is released at https:// github.com/msracver/Deep-Feature-Flow.
translated by 谷歌翻译
视频实例分割(VIS)是一个新的固有多任务问题,旨在在视频序列中检测,细分和跟踪每个实例。现有方法主要基于单帧功能或多个帧的单尺度功能,其中忽略了时间信息或多尺度信息。为了结合时间和比例信息,我们提出了一种时间金字塔路由(TPR)策略,以从两个相邻帧的特征金字塔对有条件地对齐和进行像素级聚集。具体而言,TPR包含两个新的组件,包括动态对齐细胞路由(DACR)和交叉金字塔路由(CPR),其中DACR设计用于跨时间维度对齐和门控金字塔特征,而CPR则在跨音阶范围内暂时汇总的特征。此外,我们的方法是轻巧和插件模块,可以轻松地应用于现有的实例分割方法。在包括YouTube-Vis(2019,2021)和CityScapes-VP在内的三个数据集上进行的广泛实验证明了拟议方法对几种最先进的视频实例和全盘细分方法的有效性和效率。代码将在\ url {https://github.com/lxtgh/temporalpyramidrouting}上公开获得。
translated by 谷歌翻译
现代的高性能语义分割方法采用沉重的主链和扩张的卷积来提取相关特征。尽管使用上下文和语义信息提取功能对于分割任务至关重要,但它为实时应用程序带来了内存足迹和高计算成本。本文提出了一种新模型,以实现实时道路场景语义细分的准确性/速度之间的权衡。具体来说,我们提出了一个名为“比例吸引的条带引导特征金字塔网络”(s \ textsuperscript {2} -fpn)的轻巧模型。我们的网络由三个主要模块组成:注意金字塔融合(APF)模块,比例吸引条带注意模块(SSAM)和全局特征Upsample(GFU)模块。 APF采用了注意力机制来学习判别性多尺度特征,并有助于缩小不同级别之间的语义差距。 APF使用量表感知的关注来用垂直剥离操作编码全局上下文,并建模长期依赖性,这有助于将像素与类似的语义标签相关联。此外,APF还采用频道重新加权块(CRB)来强调频道功能。最后,S \ TextSuperScript {2} -fpn的解码器然后采用GFU,该GFU用于融合APF和编码器的功能。已经对两个具有挑战性的语义分割基准进行了广泛的实验,这表明我们的方法通过不同的模型设置实现了更好的准确性/速度权衡。提出的模型已在CityScapes Dataset上实现了76.2 \%miou/87.3fps,77.4 \%miou/67fps和77.8 \%miou/30.5fps,以及69.6 \%miou,71.0 miou,71.0 \%miou,和74.2 \%\%\%\%\%\%。 miou在Camvid数据集上。这项工作的代码将在\ url {https://github.com/mohamedac29/s2-fpn提供。
translated by 谷歌翻译
视频突出对象检测旨在在视频中找到最具视觉上的对象。为了探索时间依赖性,现有方法通常是恢复性的神经网络或光学流量。然而,这些方法需要高计算成本,并且往往会随着时间的推移积累不准确性。在本文中,我们提出了一种带有注意模块的网络,以学习视频突出物体检测的对比特征,而没有高计算时间建模技术。我们开发了非本地自我关注方案,以捕获视频帧中的全局信息。共注意配方用于结合低级和高级功能。我们进一步应用了对比学学习以改善来自相同视频的前景区域对的特征表示,并将前景 - 背景区域对被推除在潜在的空间中。帧内对比损失有助于将前景和背景特征分开,并且帧间的对比损失提高了时间的稠度。我们对多个基准数据集进行广泛的实验,用于视频突出对象检测和无监督的视频对象分割,并表明所提出的方法需要较少的计算,并且对最先进的方法进行有利地执行。
translated by 谷歌翻译
识别息肉对于在计算机辅助临床支持系统中自动分析内窥镜图像的自动分析具有挑战性。已经提出了基于卷积网络(CNN),变压器及其组合的模型,以分割息肉以有希望的结果。但是,这些方法在模拟息肉的局部外观方面存在局限性,或者在解码过程中缺乏用于空间依赖性的多层次特征。本文提出了一个新颖的网络,即结肠形式,以解决这些局限性。 Colonformer是一种编码器架构,能够在编码器和解码器分支上对远程语义信息进行建模。编码器是一种基于变压器的轻量级体系结构,用于在多尺度上建模全局语义关系。解码器是一种层次结构结构,旨在学习多层功能以丰富特征表示。此外,添加了一个新的Skip连接技术,以完善整体地图中的息肉对象的边界以进行精确分割。已经在五个流行的基准数据集上进行了广泛的实验,以进行息肉分割,包括Kvasir,CVC-Clinic DB,CVC-ColondB,CVC-T和Etis-Larib。实验结果表明,我们的结肠构造者在所有基准数据集上的表现优于其他最先进的方法。
translated by 谷歌翻译
基于文本的视频细分旨在通过用文本查询指定演员及其表演动作来细分视频序列中的演员。由于\ emph {emph {语义不对称}的问题,以前的方法无法根据演员及其动作以细粒度的方式将视频内容与文本查询对齐。 \ emph {语义不对称}意味着在多模式融合过程中包含不同量的语义信息。为了减轻这个问题,我们提出了一个新颖的演员和动作模块化网络,该网络将演员及其动作分别定位在两个单独的模块中。具体来说,我们首先从视频和文本查询中学习与参与者相关的内容,然后以对称方式匹配它们以定位目标管。目标管包含所需的参与者和动作,然后将其送入完全卷积的网络,以预测演员的分割掩模。我们的方法还建立了对象的关联,使其与所提出的时间建议聚合机制交叉多个框架。这使我们的方法能够有效地细分视频并保持预测的时间一致性。整个模型允许联合学习参与者的匹配和细分,并在A2D句子和J-HMDB句子数据集上实现单帧细分和完整视频细分的最新性能。
translated by 谷歌翻译
Semantic segmentation usually benefits from global contexts, fine localisation information, multi-scale features, etc. To advance Transformer-based segmenters with these aspects, we present a simple yet powerful semantic segmentation architecture, termed as IncepFormer. IncepFormer has two critical contributions as following. First, it introduces a novel pyramid structured Transformer encoder which harvests global context and fine localisation features simultaneously. These features are concatenated and fed into a convolution layer for final per-pixel prediction. Second, IncepFormer integrates an Inception-like architecture with depth-wise convolutions, and a light-weight feed-forward module in each self-attention layer, efficiently obtaining rich local multi-scale object features. Extensive experiments on five benchmarks show that our IncepFormer is superior to state-of-the-art methods in both accuracy and speed, e.g., 1) our IncepFormer-S achieves 47.7% mIoU on ADE20K which outperforms the existing best method by 1% while only costs half parameters and fewer FLOPs. 2) Our IncepFormer-B finally achieves 82.0% mIoU on Cityscapes dataset with 39.6M parameters. Code is available:github.com/shendu0321/IncepFormer.
translated by 谷歌翻译
实时视频细分是许多实际应用程序(例如自动驾驶和机器人控制)的关键任务。由于最新的语义细分模型尽管表现令人印象深刻,但对于实时应用来说通常太重了,因此研究人员提出了具有速度准确性权衡的轻量级体系结构,以降低准确性为代价实现实时速度。在本文中,我们提出了一个新颖的框架,通过利用视频中的时间位置来加快使用跳过连接进行实时视觉任务的架构。具体而言,在每个帧的到来时,我们将特征从上一个帧转换为在特定的空间箱中重复使用它们。然后,我们在当前帧区域上对骨干网络进行部分计算,以捕获当前帧和上一个帧之间的时间差异。这是通过使用门控机制动态掉出残留块来完成的,该机制决定哪些基于框架间失真掉落。我们在具有多个骨干网络的视频语义分割基准上验证了我们的时空掩码发生器(STMG),并证明我们的方法在很大程度上可以随着准确性的最小损失而加快推断。
translated by 谷歌翻译
带有图像级标签的弱监督语义分割(WSSS)是一项重要且具有挑战性的任务。由于高训练效率,WSS的端到端解决方案受到了社区的越来越多的关注。但是,当前方法主要基于卷积神经网络,无法正确探索全局信息,因此通常会导致不完整的对象区域。在本文中,为了解决上述问题,我们介绍了自然整合全局信息的变形金刚,以生成更具不可或缺的初始伪标签,以用于端到端WSSS。由变压器中的自我注意力与语义亲和力之间的固有一致性激发,我们提出了来自注意力(AFA)模块的亲和力,以从变形金刚中的多头自我注意力(MHSA)学习语义亲和力。然后将学习的亲和力借用以完善初始伪标签以进行分割。此外,为了有效地得出可靠的亲和力标签,用于监督AFA并确保伪标签的局部一致性,我们设计了一个像素自适应改进模块,该模块结合了低级图像外观信息,以完善伪标签。我们进行了广泛的实验,我们的方法在Pascal VOC 2012和MS Coco 2014数据集中获得了66.0%和38.9%的MIOU,大大优于最近的端到端方法和几个多阶段竞争对手。代码可在https://github.com/rulixiang/afa上找到。
translated by 谷歌翻译
语义分割是自主车辆了解周围场景的关键技术。当代模型的吸引力表现通常以牺牲重计算和冗长的推理时间为代价,这对于自行车来说是无法忍受的。在低分辨率图像上使用轻量级架构(编码器 - 解码器或双路)或推理,最近的方法实现了非常快的场景解析,即使在单个1080TI GPU上以100多件FPS运行。然而,这些实时方法与基于扩张骨架的模型之间的性能仍有显着差距。为了解决这个问题,我们提出了一家专门为实时语义细分设计的高效底座。所提出的深层双分辨率网络(DDRNET)由两个深部分支组成,之间进行多个双边融合。此外,我们设计了一个名为Deep聚合金字塔池(DAPPM)的新上下文信息提取器,以基于低分辨率特征映射放大有效的接收字段和熔丝多尺度上下文。我们的方法在城市景观和Camvid数据集上的准确性和速度之间实现了新的最先进的权衡。特别是,在单一的2080Ti GPU上,DDRNET-23-Slim在Camvid测试组上的Citycapes试验组102 FPS上的102 FPS,74.7%Miou。通过广泛使用的测试增强,我们的方法优于最先进的模型,需要计算得多。 CODES和培训的型号在线提供。
translated by 谷歌翻译
基于3DCNN,ConvlSTM或光流的先前方法在视频显着对象检测(VSOD)方面取得了巨大成功。但是,它们仍然遭受高计算成本或产生的显着图质量较差的困扰。为了解决这些问题,我们设计了一个基于时空存储器(STM)网络,该网络从相邻帧中提取当前帧的有用时间信息作为VSOD的时间分支。此外,以前的方法仅考虑无时间关联的单帧预测。结果,模型可能无法充分关注时间信息。因此,我们最初将框架间的对象运动预测引入VSOD。我们的模型遵循标准编码器 - 编码器体系结构。在编码阶段,我们通过使用电流及其相邻帧的高级功能来生成高级的时间特征。这种方法比基于光流的方法更有效。在解码阶段,我们提出了一种有效的空间和时间分支融合策略。高级特征的语义信息用于融合低级特征中的对象细节,然后逐步获得时空特征以重建显着性图。此外,受图像显着对象检测(ISOD)中常用的边界监督的启发,我们设计了一种运动感知损失,用于预测对象边界运动,并同时对VSOD和对象运动预测执行多任务学习,这可以进一步促进模型以提取提取的模型时空特征准确并保持对象完整性。在几个数据集上进行的广泛实验证明了我们方法的有效性,并且可以在某些数据集上实现最新指标。所提出的模型不需要光流或其他预处理,并且在推理过程中可以达到近100 fps的速度。
translated by 谷歌翻译
我们提出了streamDeq,这是一种以最小为每片计算的视频中框架表示的方法。与传统方法至少随着网络深度线性线性增长的常规方法相反,我们旨在以连续的方式更新表示形式。为此,我们利用最近出现的隐式层模型,该模型通过解决固定点问题来扩展图像的表示。我们的主要见解是利用视频的缓慢变化,并使用先前的框架表示作为每个帧的初始条件。该方案有效地回收了最近的推理计算,并大大减少了所需的处理时间。通过广泛的实验分析,我们表明StreamDeq能够在几个帧时间内恢复近乎最佳的表示形式,并在整个视频持续时间内保持最新的表示。我们在视频语义细分和视频对象检测方面进行的实验表明,StreamDeq以基线(标准MDEQ)的准确度达到了准确性,而$ 3 \ times $ $ abter $ abter的$ 3。项目页面可在以下网址获得:https://ufukertenli.github.io/streamdeq/
translated by 谷歌翻译
利用多尺度功能在解决语义细分问题方面表现出了巨大的潜力。聚集通常是用总和或串联(Concat)进行的,然后是卷积(Conv)层。但是,它将高级上下文完全通过了以下层次结构,而无需考虑它们的相互关系。在这项工作中,我们旨在启用低级功能,以通过跨尺度像素到区域关系操作从相邻的高级特征图中汇总互补上下文。我们利用跨尺度上下文的传播,即使高分辨率的低级特征也可以使远程依赖关系也可以捕获。为此,我们采用有效的功能金字塔网络来获得多尺度功能。我们提出了一个关系语义提取器(RSE)和关系语义传播器(RSP),分别用于上下文提取和传播。然后,我们将几个RSP堆叠到RSP头中,以实现上下文的渐进自上而下分布。两个具有挑战性的数据集和可可的实验结果表明,RSP头在语义细分和泛型分割方面都具有高效率的竞争性。在语义分割任务中,它的表现优于DeepLabv3 [1],而在语义分割任务中少75%(多重添加)。
translated by 谷歌翻译